A025201 a(n) = floor(log(n!)).
0, 0, 1, 3, 4, 6, 8, 10, 12, 15, 17, 19, 22, 25, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 58, 61, 64, 67, 71, 74, 78, 81, 85, 88, 92, 95, 99, 102, 106, 110, 114, 117, 121, 125, 129, 132, 136, 140, 144, 148, 152, 156, 160, 164, 168, 172, 176, 180, 184, 188, 192, 196, 201, 205, 209, 213, 217, 221, 226
Offset: 1
Keywords
References
- S. Ramanujan, The Lost Notebook and other Unpublished Papers. S. Raghavan and S. S. Rangachari, editors. Narosa, New Delhi, 1987, page 339.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- Wikipedia, Stirling's approximation: Speed of convergence and error estimates.
Programs
-
Magma
[Floor(Log(Factorial(n))): n in [1..100]]; // Vincenzo Librandi, May 30 2015
-
Maple
seq(floor(lnGAMMA(n+1)),n=1..100);# Robert Israel, May 29 2015
-
Mathematica
Floor[ LogGamma[ Range[ 69] + 1]] (* Harvey P. Dale, Aug 23 2014 and slightly modified by Robert G. Wilson v, Jun 21 2015 to correct index *) f[n_] := Floor[Log[n!]]; Array[f, 69] (* Robert G. Wilson v, Jun 11 2015 *)
-
PARI
vector(100, n, floor(lngamma(n+1)) ) \\ Joerg Arndt, Dec 30 2014
-
PARI
A025201(n)=floor(lngamma(n+1)) \\ floor(n*(log(n)-(n>1))+log(2*Pi*n)/2) is 2-3 times faster but could yield a(n)-1 instead of a(n), if frac(log(n!)) < 1/(12n+1). This doesn't happen up to n = 10^6, though. - M. F. Hasler, Dec 03 2018
Formula
a(n) = floor(n*log(n) - n + log(2*Pi*n)/2) (Stirling's approximation) holds for all 1 < n < 10^6, but a counterexample might exist for some larger n. - M. F. Hasler, Dec 03 2018
Extensions
Simpler name (originally submitted in Formula section) from Mohammed Bouayoun (bouyao(AT)wanadoo.fr), Mar 20 2004 - Jon E. Schoenfield, Dec 29 2014
Comments