cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A006880 Number of primes < 10^n.

Original entry on oeis.org

0, 4, 25, 168, 1229, 9592, 78498, 664579, 5761455, 50847534, 455052511, 4118054813, 37607912018, 346065536839, 3204941750802, 29844570422669, 279238341033925, 2623557157654233, 24739954287740860, 234057667276344607, 2220819602560918840, 21127269486018731928, 201467286689315906290
Offset: 0

Views

Author

Keywords

Comments

Number of primes with at most n digits; or pi(10^n).
Partial sums of A006879. - Lekraj Beedassy, Jun 25 2004
Also omega( (10^n)! ), where omega(x): number of distinct prime divisors of x. - Cino Hilliard, Jul 04 2007
This sequence also gives a good approximation for the sum of primes less than 10^(n/2). This is evident from the fact that the number of primes less than 10^2n closely approximates the sum of primes less than 10^n. See link on Sum of Primes for the derivation. - Cino Hilliard, Jun 08 2008
It appears that (10^n)/log((n+3)!) is a lower bound close to a(n), see A025201. - Eric Desbiaux, Jul 20 2010, edited by M. F. Hasler, Dec 03 2018

References

  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See pp. 143, 146.
  • Richard Crandall and Carl B. Pomerance, Prime Numbers: A Computational Perspective, Springer, NY, 2001; p. 11.
  • Keith Devlin, Mathematics: The New Golden Age, new and revised edition. New York: Columbia University Press (1993): p. 6, Table 1.
  • Marcus du Sautoy, The Music of the Primes, Fourth Estate / HarperCollins, 2003; p. 48.
  • Calvin T. Long, Elementary Introduction to Number Theory. Prentice-Hall, Englewood Cliffs, NJ, 1987, p. 77.
  • Paulo Ribenboim, The Book of Prime Number Records. Springer-Verlag, NY, 2nd ed., 1989, p. 179.
  • H. Riesel, "Prime numbers and computer methods for factorization," Progress in Mathematics, Vol. 57, Birkhauser, Boston, 1985, page 38.
  • D. Shanks, Solved and Unsolved Problems in Number Theory. Chelsea, NY, 2nd edition, 1978, p. 15.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See entry 455052511 at p. 190.

Crossrefs

Programs

Formula

a(n) = A000720(10^n). - M. F. Hasler, Dec 03 2018
Limit_{n->oo} a(n)/a(n-1) = 10. - Stefano Spezia, Aug 31 2025

Extensions

Lehmer gave the incorrect value 455052512 for the 10th term. More terms May 1996. Jud McCranie points out that the 11th term is not 4188054813 but rather 4118054813.
a(22) from Robert G. Wilson v, Sep 04 2001
a(23) (see Gourdon and Sebah) has yet to be verified and the assumed error is +-1. - Robert G. Wilson v, Jul 10 2002 [The actual error was 14037804. - N. J. A. Sloane, Nov 28 2007]
a(23) corrected by N. J. A. Sloane from the web page of Tomás Oliveira e Silva, Nov 28 2007
a(25) from J. Buethe, J. Franke, A. Jost, T. Kleinjung, Jun 01 2013, who said: "We have calculated pi(10^25) = 176846309399143769411680 unconditionally, using an analytic method based on Weil's explicit formula".
a(26) from Douglas B. Staple, Dec 02 2014
a(27) in the b-file from David Baugh and Kim Walisch via Charles R Greathouse IV, Jun 01 2016
a(28) in the b-file from David Baugh and Kim Walisch, Oct 26 2020
a(29) in the b-file from David Baugh and Kim Walisch, Feb 28 2022

A046654 Nearest integer to Sum_{k=1..n} log(k) = log(n!).

Original entry on oeis.org

0, 0, 1, 2, 3, 5, 7, 9, 11, 13, 15, 18, 20, 23, 25, 28, 31, 34, 36, 39, 42, 45, 48, 52, 55, 58, 61, 65, 68, 71, 75, 78, 82, 85, 89, 92, 96, 99, 103, 107, 110, 114, 118, 122, 125, 129, 133, 137, 141, 145, 148, 152, 156, 160, 164, 168, 172, 176, 180
Offset: 0

Views

Author

N. J. A. Sloane, Dec 27 1999

Keywords

Comments

a(n) is also the nearest integer to log(n!). - Eric M. Schmidt, Jun 19 2015
Log(n!) is asymptotic to A275341. - Mats Granvik, Aug 02 2016
Stirling's approximation s(n) = n*log(n) - n + log(2*Pi*n)/2 is known to be equal to log(n!) up to an error between 1/(12n + 1) and 1/12n. For all 0 < n < 10^6 except for n = 11, round(s(n)) = a(n). What is the next such exceptional index n? - M. F. Hasler, Dec 03 2018

References

  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979, Section 22.1.

Crossrefs

Cf. A025201.

Programs

  • Magma
    [Round(Log(Factorial(n))): n in [2..100]]; // Vincenzo Librandi, Jun 19 2015
    
  • Mathematica
    nn = 58; t = Accumulate[Log /@ Range[nn]]; Table[If[(y = Ceiling[x = t[[i]]]) - x <= x - (z = Floor[x]), a = y, a = z]; a, {i, nn}] (* Jayanta Basu, Jun 27 2013 *)
  • PARI
    A046654(n)=round(lngamma(n+1)) \\ M. F. Hasler, Dec 03 2018

Formula

a(n) = n*log(n) - n + O(log(n)). - Arkadiusz Wesolowski, Oct 18 2013
a(n) = round(LogGamma(n + 1)). - Mats Granvik, Roger L. Bagula, Aug 06 2016
a(n) = round(log(Product_{k=1..n} A139547(n,k))). - Mats Granvik, Aug 07 2016

Extensions

Name edited and a(0) = 0 prepended by M. F. Hasler, Dec 03 2018

A056690 a(n) = floor(product_{k=2..n} log(k)).

Original entry on oeis.org

0, 0, 1, 1, 3, 5, 12, 27, 62, 149, 371, 952, 2513, 6807, 18873, 53472, 154554, 455076, 1363287, 4150560, 12829558, 40227005, 127843589, 411512640, 1340747909, 4418886387, 14724633149, 49582195801, 168638834537, 579103599979
Offset: 2

Views

Author

Leroy Quet, Aug 10 2000

Keywords

Examples

			log(2)*log(3)*log(4)*log(5)= 1.699... So a(5) = 1, since the integer part of 1.699... is 1.
		

Crossrefs

Programs

  • Mathematica
    Table[Floor[Product[Log[k], {k, 2, n}]], {n, 2, 40}] (* Vaclav Kotesovec, Nov 28 2015 *)

Formula

log(a(n)) ~ n*(log(log(n)) - 1/log(n) - 1/log(n)^2 - 2/log(n)^3 - 6/log(n)^4 - 24/log(n)^5 - ...). - Vaclav Kotesovec, Feb 12 2023

A066026 a(n) = ceiling(log(n!)).

Original entry on oeis.org

0, 1, 2, 4, 5, 7, 9, 11, 13, 16, 18, 20, 23, 26, 28, 31, 34, 37, 40, 43, 46, 49, 52, 55, 59, 62, 65, 68, 72, 75, 79, 82, 86, 89, 93, 96, 100, 103, 107, 111, 115, 118, 122, 126, 130, 133, 137, 141, 145, 149, 153, 157, 161, 165, 169, 173, 177, 181, 185, 189, 193, 197, 202
Offset: 1

Views

Author

Robert A. Stump (bee_ess107(AT)yahoo.com), Dec 11 2001

Keywords

Crossrefs

Programs

  • Mathematica
    Ceiling[Log[Range[70]!]] (* Harvey P. Dale, Jul 23 2012 *)
  • PARI
    { for (n=1, 1000, a=ceil(log(n!)); write("b066026.txt", n, " ", a) ) } \\ Harry J. Smith, Nov 07 2009
    
  • PARI
    a(n) = ceil(lngamma(n+1)) \\ Michel Marcus, Jun 29 2015

Extensions

Terms a(51)-a(63) from Harry J. Smith, Nov 07 2009

A258782 Nearest integer to log_2(n!).

Original entry on oeis.org

0, 0, 1, 3, 5, 7, 9, 12, 15, 18, 22, 25, 29, 33, 36, 40, 44, 48, 53, 57, 61, 65, 70, 74, 79, 84, 88, 93, 98, 103, 108, 113, 118, 123, 128, 133, 138, 143, 149, 154, 159, 165, 170, 175, 181, 186, 192, 197, 203, 209, 214, 220, 226, 231, 237, 243, 249, 254, 260, 266, 272, 278, 284, 290, 296, 302, 308, 314
Offset: 0

Views

Author

Eli Sadoff, Jun 10 2015

Keywords

Examples

			a(6) = round(log_2(6!)) = round(9.49...) = 9.
		

Crossrefs

Programs

  • MATLAB
    for i = 1:20 { disp(round(log2(factorial(i)))) } end
    
  • Magma
    [Round(LogGamma(n+1)/Log(2)): n in [0..70]]; // Bruno Berselli, Jun 23 2015
    
  • Maple
    seq(round(lnGAMMA(n+1)/ln(2)),n=0..100); # Robert Israel, Jun 10 2015
  • Mathematica
    Round[Log[2, Range[0, 100]! ]] (* Giovanni Resta, Jun 10 2015 *)
  • PARI
    a(n) = round(log(n!)/log(2)); \\ Michel Marcus, Jun 10 2015
    
  • PARI
    a(n)=round(lngamma(n+1)/log(2)) \\ Charles R Greathouse IV, Jun 10 2015
    
  • Sage
    [round(log_gamma(n+1)/log2) for n in (0..70)] # Bruno Berselli, Jun 23 2015

Formula

a(n) = round(log_2(n!)).
a(n) = A004257(A000142(n)). - Michel Marcus, Jun 10 2015
a(n) = round(Sum_{k=1..n} log_2(k)). - Tom Edgar, Jun 10 2015
a(n) is within 1 of n*(log(n)-1)/log(2) + log(n)/(2*log(2)) + log(sqrt(2*Pi))/log(2) for n >= 1. - Robert Israel, Jun 10 2015

A321991 a(n) = round(1/frac(log(n!))) for n > 1; a(0) = a(1) = 0.

Original entry on oeis.org

0, 0, 1, 1, 6, 1, 2, 2, 2, 1, 10, 2, 1, 2, 5, 1, 1, 2, 3, 3, 3, 3, 2, 2, 1, 277, 4, 2, 1, 4, 2, 11, 2, 18, 2, 7, 1, 3, 1, 2, 3, 29, 1, 2, 3, 8, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 3, 3, 2, 2, 2, 1, 1, 107, 6, 3, 2, 1, 1, 5, 2, 1, 1, 4, 2, 1, 5, 2, 1, 3, 1, 15, 2, 1, 3, 1, 5, 1, 6, 2, 7
Offset: 0

Views

Author

M. F. Hasler, Dec 03 2018

Keywords

Comments

Motivated by Stirling's approximation s(n) = n*log(n) - n - log(2*Pi*n)/2 of log(n!), known to verify s(n) + 1/(12n+1) < log(n!) < s(n) + 1/12n. s(n) has the same integer part as log(n!) for all 1 < n < 10^6 at least, cf. A025201, but if the fractional part of log(n!) is less than 1/(12n+1), the approximation would yield the next lower integer. The first such n must have a(n) > 12n, so it is necessarily a record in this sequence, even a record of the sequence (a(n)/n). a(24) = 277 is a close miss, 12*24 = 288.

Examples

			Records occur at a(2) = 1, a(4) = 6, a(10) = 10, a(25) = 277, a(589) = 760, a(2965) = 921, a(3295) = 988, a(3802) = 1326, a(8743) = 1516, a(10634) = 2458, a(15404) = 11472, a(31672) = 56377, a(152170) = 162958, a(307001) = 295209, a(704236) = 491928, a(862929) = 528736, a(904492) = 1612903, a(1356678) = 5098244, ...
Among these, only a(2) = 1, a(4) = 6, and a(25) = 277 set a record for a(n)/n. No value is known for which a(n)/n >= 12.
		

Crossrefs

Programs

  • PARI
    A321991(n)=if(n>1,1\/frac(lngamma(n+1)),0)

A025209 a(n) = floor(floor(S2)/floor(S1)), where S2 and S1 are, respectively, the 2nd and first elementary symmetric functions of {log(k)}, k = 2,3,...,n.

Original entry on oeis.org

0, 1, 2, 2, 3, 4, 5, 6, 8, 9, 10, 11, 13, 14, 15, 17, 18, 20, 21, 23, 24, 26, 27, 29, 31, 33, 34, 36, 37, 39, 41, 43, 44, 46, 48, 50, 52, 53, 55, 57, 59, 61, 63, 65, 67, 69, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 95
Offset: 3

Views

Author

Keywords

Formula

a(n) = floor(A025202(n) / A025201(n)). - Sean A. Irvine, Aug 17 2019

Extensions

Title corrected by Sean A. Irvine, Aug 17 2019

A025210 a(n) = floor(floor(S3)/floor(S1)); where S3 and S1 are, respectively, the third and first elementary symmetric functions of {log(k)}, k = 1,2,...,n.

Original entry on oeis.org

0, 1, 3, 6, 11, 18, 25, 36, 50, 64, 81, 104, 127, 153, 182, 215, 251, 292, 336, 385, 438, 487, 549, 616, 687, 753, 835, 910, 1002, 1087, 1190, 1285, 1400, 1505, 1632, 1748, 1870, 1997, 2148, 2287, 2431, 2582, 2759, 2922, 3091
Offset: 4

Views

Author

Keywords

Formula

a(n) = floor(A025203(n) / A025201(n)). - Sean A. Irvine, Aug 18 2019

Extensions

Title corrected and more terms from Sean A. Irvine, Aug 18 2019
Showing 1-8 of 8 results.