cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Eli Sadoff

Eli Sadoff's wiki page.

Eli Sadoff has authored 1 sequences.

A258782 Nearest integer to log_2(n!).

Original entry on oeis.org

0, 0, 1, 3, 5, 7, 9, 12, 15, 18, 22, 25, 29, 33, 36, 40, 44, 48, 53, 57, 61, 65, 70, 74, 79, 84, 88, 93, 98, 103, 108, 113, 118, 123, 128, 133, 138, 143, 149, 154, 159, 165, 170, 175, 181, 186, 192, 197, 203, 209, 214, 220, 226, 231, 237, 243, 249, 254, 260, 266, 272, 278, 284, 290, 296, 302, 308, 314
Offset: 0

Author

Eli Sadoff, Jun 10 2015

Keywords

Examples

			a(6) = round(log_2(6!)) = round(9.49...) = 9.
		

Crossrefs

Programs

  • MATLAB
    for i = 1:20 { disp(round(log2(factorial(i)))) } end
    
  • Magma
    [Round(LogGamma(n+1)/Log(2)): n in [0..70]]; // Bruno Berselli, Jun 23 2015
    
  • Maple
    seq(round(lnGAMMA(n+1)/ln(2)),n=0..100); # Robert Israel, Jun 10 2015
  • Mathematica
    Round[Log[2, Range[0, 100]! ]] (* Giovanni Resta, Jun 10 2015 *)
  • PARI
    a(n) = round(log(n!)/log(2)); \\ Michel Marcus, Jun 10 2015
    
  • PARI
    a(n)=round(lngamma(n+1)/log(2)) \\ Charles R Greathouse IV, Jun 10 2015
    
  • Sage
    [round(log_gamma(n+1)/log2) for n in (0..70)] # Bruno Berselli, Jun 23 2015

Formula

a(n) = round(log_2(n!)).
a(n) = A004257(A000142(n)). - Michel Marcus, Jun 10 2015
a(n) = round(Sum_{k=1..n} log_2(k)). - Tom Edgar, Jun 10 2015
a(n) is within 1 of n*(log(n)-1)/log(2) + log(n)/(2*log(2)) + log(sqrt(2*Pi))/log(2) for n >= 1. - Robert Israel, Jun 10 2015