cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A025229 a(n) = a(1)*a(n-1) + a(2)*a(n-2) + ...+ a(n-1)*a(1) for n >= 3, with initial terms 1,3.

Original entry on oeis.org

1, 3, 6, 21, 78, 318, 1356, 5997, 27222, 126138, 594132, 2836290, 13692300, 66729180, 327855768, 1622216829, 8076311142, 40427919714, 203353800324, 1027318915254, 5210182030308, 26517609163812, 135397544040744, 693364054299474
Offset: 1

Views

Author

Keywords

Programs

  • Maple
    A025229 := proc(n)
        option remember;
        if n <=1 then
            n;
        elif n = 2 then
            3;
        else
            add( procname(n-i)*procname(i),i=1..n-1) ;
        end if;
    end proc: # R. J. Mathar, Jun 17 2015
  • Mathematica
    Table[SeriesCoefficient[(1-Sqrt[1-4*x-8*x^2])/2,{x,0,n}],{n,1,20}] (* Vaclav Kotesovec, Oct 07 2012 *)
  • PARI
    a(n)=polcoeff((1-sqrt(1-4*x-8*x^2+x*O(x^n)))/2,n)

Formula

G.f.: (1-sqrt(1-4*x-8*x^2))/2. - Michael Somos, Jun 08 2000
a(n) = Sum_{k=0..n} 2^(n-k)*C(k)*C(k+1, n-k) [offset 0]. - Paul Barry, Feb 22 2005
Another recurrence formula: n*a(n) = (4*n-6)*a(n-1)+(8*n-24)*a(n-2). - Richard Choulet, Dec 16 2009
a(n) ~ sqrt(3-sqrt(3))*(2+2*sqrt(3))^n/(4*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 07 2012

Extensions

Name clarified by Robert C. Lyons, Feb 06 2025