A025266 a(n) = a(1)*a(n-1) + a(2)*a(n-2) + ... + a(n-1)*a(1) for n >= 4.
1, 1, 0, 1, 2, 6, 16, 45, 126, 358, 1024, 2954, 8580, 25084, 73760, 218045, 647670, 1932230, 5787520, 17398270, 52476700, 158765300, 481690080, 1465239250, 4467799212, 13653601116, 41812009216, 128290240180, 394338641416, 1214165174712
Offset: 1
Keywords
Links
- Filippo Disanto, The size of the biggest Caterpillar subtree in binary rooted planar trees, arXiv preprint arXiv:1202.5668 [math.CO], 2012-2013.
- Filippo Disanto and Thomas Wiehe, Some instances of a sub-permutation problem on pattern avoiding permutations, arXiv preprint arXiv:1210.6908 [math.CO], 2012-2014.
- Filippo Disanto, Unbalanced subtrees in binary rooted ordered and un-ordered trees, Séminaire Lotharingien de Combinatoire, 68 (2013), Article B68b.
- Filippo Disanto and Thomas Wiehe, On the sub-permutations of pattern avoiding permutations, Discrete Math., 337 (2014), 127-141.
- Ricardo Gómez Aíza, Trees with flowers: A catalog of integer partition and integer composition trees with their asymptotic analysis, arXiv:2402.16111 [math.CO], 2024. See pp. 19-20.
- Tom Roberts and Thomas Prellberg, Improving Convergence of Generalised Rosenbluth Sampling for Branched Polymer Models by Uniform Sampling, arXiv:2401.12201 [cond-mat.stat-mech], 2024. See p. 21.
Crossrefs
Cf. A025264.
Programs
-
Mathematica
nmax = 30; aa = ConstantArray[0,nmax]; aa[[1]] = 1; aa[[2]] = 1; aa[[3]] = 0; Do[aa[[n]] = Sum[aa[[k]] * aa[[n-k]],{k,1,n-1}],{n,4,nmax}]; aa (* Vaclav Kotesovec, Jan 25 2015 *)
-
PARI
a(n)=polcoeff((1-sqrt(1-4*x+8*x^3+x*O(x^n)))/2,n)
Formula
G.f.: (1-sqrt(1-4*x+8*x^3))/2. - Michael Somos, Jun 08 2000
Recurrence: n*a(n) = 2*(2*n-3)*a(n-1) - 4*(2*n-9)*a(n-3). - Vaclav Kotesovec, Jan 25 2015
a(n) ~ sqrt(3*sqrt(5)-5)/(4*sqrt((1+sqrt(5))*Pi*n^3))*(4/(sqrt(5)-1))^n. - Ricardo Gómez Aíza, Feb 25 2024
Comments