A214198 Number of rooted planar binary unlabeled trees with n leaves and caterpillar index >= 3.
0, 0, 0, 2, 4, 12, 36, 116, 384, 1304, 4504, 15772, 55832, 199432, 717816, 2600680, 9476800, 34710000, 127712560, 471851180, 1749864920, 6511643720, 24307501720, 91000873560, 341594374400, 1285436348112, 4848292800336, 18325541062936, 69405260675824, 263353613108944, 1001028051476656, 3811242180811728, 14533071892504448
Offset: 0
Keywords
Links
- Filippo Disanto, The size of the biggest Caterpillar subtree in binary rooted planar trees, arXiv preprint arXiv:1202.5668 [math.CO], 2012.
Programs
-
Maple
C:=(1-sqrt(1-4*x))/2; # A000108 with a different offset # F-(k): gives A025266, A025271, A214200, A214203 Fm:=k->(1/2)*(1-sqrt(1-4*x+2^(k+1)*x^(k+1))); Sm:=k->seriestolist(series(Fm(k),x,50)); # F+(k): gives A000108, A214198, A214201, A214204 Fp:=k->C-Fm(k-1); Sp:=k->seriestolist(series(Fp(k),x,50)); # F(k): gives A025266, A214199, A214202, A214205 F:=k->Fm(k)-Fm(k-1); S:=k->seriestolist(series(F(k),x,50));
-
Mathematica
(1/2)*(Sqrt[1-4*x+8*x^3] - Sqrt[1-4*x]) + O[x]^33 // CoefficientList[#, x]& (* Jean-François Alcover, Nov 07 2016, after Maple *)