cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A025281 a(n) = sopfr(n!), where sopfr = A001414 is the integer log.

Original entry on oeis.org

0, 0, 2, 5, 9, 14, 19, 26, 32, 38, 45, 56, 63, 76, 85, 93, 101, 118, 126, 145, 154, 164, 177, 200, 209, 219, 234, 243, 254, 283, 293, 324, 334, 348, 367, 379, 389, 426, 447, 463, 474, 515, 527, 570, 585, 596, 621, 668, 679, 693, 705, 725, 742, 795, 806, 822, 835, 857, 888
Offset: 0

Views

Author

Keywords

References

  • József Sándor, Dragoslav S. Mitrinovic and Borislav Crstici, Handbook of Number Theory I, Springer Science & Business Media, 2005, Chapter IV, p. 144.

Crossrefs

Partial sums of A001414.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<2, 0,
          a(n-1)+add(i[1]*i[2], i=ifactors(n)[2]))
        end:
    seq(a(n), n=0..60);  # Alois P. Heinz, Apr 09 2021
  • Mathematica
    sopfr[n_] := Plus @@ Times @@@ FactorInteger@ n; a[n_] := a[n] = a[n - 1] + sopfr[n]; a[0] = a[1] = 0; Array[a, 59, 0] (* Robert G. Wilson v, May 18 2015 *)
  • PARI
    for(n=1,100,print1(sum(k=1,n,sum(i=1,omega(k), component(component(factor(k),1),i)*component(component(factor(k),2),i))),","))
    
  • Python
    from sympy import factorial, factorint
    def A025281(n): return sum(p*e for p, e in factorint(factorial(n)).items()) # Chai Wah Wu, Apr 09 2021

Formula

a(n) = A001414(A000142(n)).
From Benoit Cloitre, Apr 14 2002: (Start)
a(0)=0; for n>0, a(n) = Sum_{k=1..n} A001414(k).
Asymptotic formula: a(n) ~ (Pi^2/12)*n^2/log(n). [Proven by Alladi and Erdős (1977). - Amiram Eldar, Mar 04 2021]
(End)