A025281 a(n) = sopfr(n!), where sopfr = A001414 is the integer log.
0, 0, 2, 5, 9, 14, 19, 26, 32, 38, 45, 56, 63, 76, 85, 93, 101, 118, 126, 145, 154, 164, 177, 200, 209, 219, 234, 243, 254, 283, 293, 324, 334, 348, 367, 379, 389, 426, 447, 463, 474, 515, 527, 570, 585, 596, 621, 668, 679, 693, 705, 725, 742, 795, 806, 822, 835, 857, 888
Offset: 0
Keywords
References
- József Sándor, Dragoslav S. Mitrinovic and Borislav Crstici, Handbook of Number Theory I, Springer Science & Business Media, 2005, Chapter IV, p. 144.
Links
- Chai Wah Wu, Table of n, a(n) for n = 0..10000 (terms n = 0..1000 from T. D. Noe)
- Krishnaswami Alladi and Paul Erdős, On an additive arithmetic function, Pacific Journal of Mathematics, Vol. 71, No. 2 (1977), pp. 275-294; alternative link.
Programs
-
Maple
a:= proc(n) option remember; `if`(n<2, 0, a(n-1)+add(i[1]*i[2], i=ifactors(n)[2])) end: seq(a(n), n=0..60); # Alois P. Heinz, Apr 09 2021
-
Mathematica
sopfr[n_] := Plus @@ Times @@@ FactorInteger@ n; a[n_] := a[n] = a[n - 1] + sopfr[n]; a[0] = a[1] = 0; Array[a, 59, 0] (* Robert G. Wilson v, May 18 2015 *)
-
PARI
for(n=1,100,print1(sum(k=1,n,sum(i=1,omega(k), component(component(factor(k),1),i)*component(component(factor(k),2),i))),","))
-
Python
from sympy import factorial, factorint def A025281(n): return sum(p*e for p, e in factorint(factorial(n)).items()) # Chai Wah Wu, Apr 09 2021
Formula
From Benoit Cloitre, Apr 14 2002: (Start)
a(0)=0; for n>0, a(n) = Sum_{k=1..n} A001414(k).
Asymptotic formula: a(n) ~ (Pi^2/12)*n^2/log(n). [Proven by Alladi and Erdős (1977). - Amiram Eldar, Mar 04 2021]
(End)