cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A025321 Numbers that are the sum of 3 nonzero squares in exactly 1 way.

Original entry on oeis.org

3, 6, 9, 11, 12, 14, 17, 18, 19, 21, 22, 24, 26, 29, 30, 34, 35, 36, 42, 43, 44, 45, 46, 48, 49, 50, 53, 56, 61, 65, 67, 68, 70, 72, 73, 76, 78, 82, 84, 88, 91, 93, 96, 97, 104, 106, 109, 115, 116, 120, 133, 136, 140, 142, 144, 145, 157, 163, 168, 169, 172, 176, 180, 184, 190
Offset: 1

Views

Author

Keywords

Comments

It appears that all terms have the form 4^i A094740(j) for some i and j. - T. D. Noe, Jun 06 2008
This is true, because A025427(4*n) = A025427(n) for all n. - Robert Israel, Mar 09 2016

Crossrefs

Programs

  • Mathematica
    lim=20; nLst=Table[0, {lim^2}]; Do[n=a^2+b^2+c^2; If[n>0 && nT. D. Noe, Jun 06 2008 *)
    b[n_, i_, k_, t_] := b[n, i, k, t] = If[n == 0, If[t == 0, 1, 0], If[i<1 || t<1, 0, b[n, i - 1, k, t] + If[i^2 > n, 0, b[n - i^2, i, k, t - 1]]]];
    T[n_, k_] := b[n, Sqrt[n] // Floor, k, k];
    Position[Table[T[n, 3], {n, 0, 200}], 1] - 1 // Flatten (* Jean-François Alcover, Nov 06 2020, after Alois P. Heinz in A243148 *)
  • PARI
    is(n)=if(n<11, return(n>0 && n%3==0)); if(n%4==0, return(is(n/4))); my(w); for(i=sqrtint((n-1)\3)+1,sqrtint(n-2), my(t=n-i^2); for(j=sqrtint((t-1)\2)+1,min(sqrtint(t-1),i), if(issquare(t-j^2), w++>1 && return(0)))); w \\ Charles R Greathouse IV, Aug 05 2024

Formula

A243148(a(n),3) = 1. - Alois P. Heinz, Feb 25 2019