cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A000408 Numbers that are the sum of three nonzero squares.

Original entry on oeis.org

3, 6, 9, 11, 12, 14, 17, 18, 19, 21, 22, 24, 26, 27, 29, 30, 33, 34, 35, 36, 38, 41, 42, 43, 44, 45, 46, 48, 49, 50, 51, 53, 54, 56, 57, 59, 61, 62, 65, 66, 67, 68, 69, 70, 72, 73, 74, 75, 76, 77, 78, 81, 82, 83, 84, 86, 88, 89, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 104
Offset: 1

Views

Author

Keywords

Comments

a(n) !== 7 (mod 8). - Boris Putievskiy, May 05 2013
A025427(a(n)) > 0. - Reinhard Zumkeller, Feb 26 2015
According to Halter-Koch (below), a number n is a sum of 3 squares, but not a sum of 3 nonzero squares (i.e., is in A000378 but not A000408), if and only if it is of the form 4^j*s, where j >= 0 and s in {1,2,5,10,13,25,37,58,85,130,?}, where ? denotes at most one unknown number that, if it exists, is > 5*10^10. - Jeffrey Shallit, Jan 15 2017

References

  • L. E. Dickson, History of the Theory of Numbers, vol. II: Diophantine Analysis, Dover, 2005, p. 267.
  • Savin Réalis, Answer to question 25 ("Toute puissance entière de 3 est une somme de trois carrés premiers avec 3"), Mathesis 1 (1881), pp. 87-88. (See also p. 73 where the question is posed.)

Crossrefs

Programs

  • Haskell
    a000408 n = a000408_list !! (n-1)
    a000408_list = filter ((> 0) . a025427) [1..]
    -- Reinhard Zumkeller, Feb 26 2015
    
  • Maple
    N:= 1000: # to get all terms <= N
    S:= series((JacobiTheta3(0,q)-1)^3,q,1001):
    select(t -> coeff(S,q,t)>0, [$1..N]); # Robert Israel, Jan 14 2016
  • Mathematica
    f[n_] := Flatten[Position[Take[Rest[CoefficientList[Sum[x^(i^2), {i, n}]^3, x]], n^2], ?Positive]];f[11] (* _Ray Chandler, Dec 06 2006 *)
    pr[n_] := Select[ PowersRepresentations[n, 3, 2], FreeQ[#, 0] &]; Select[ Range[104], pr[#] != {} &] (* Jean-François Alcover, Apr 04 2013 *)
    max = 1000; s = (EllipticTheta[3, 0, q] - 1)^3 + O[q]^(max+1); Select[ Range[max], SeriesCoefficient[s, {q, 0, #}] > 0 &] (* Jean-François Alcover, Feb 01 2016, after Robert Israel *)
  • PARI
    is(n)=for(x=sqrtint((n-1)\3)+1,sqrtint(n-2), for(y=1,sqrtint(n-x^2-1), if(issquare(n-x^2-y^2), return(1)))); 0 \\ Charles R Greathouse IV, Apr 04 2013
    
  • PARI
    is(n)= my(a, b) ; a=1 ; while(a^2+1Altug Alkan, Jan 18 2016
    
  • Python
    def aupto(lim):
      squares = [k*k for k in range(1, int(lim**.5)+2) if k*k <= lim]
      sum2sqs = set(a+b for i, a in enumerate(squares) for b in squares[i:])
      sum3sqs = set(a+b for a in sum2sqs for b in squares)
      return sorted(set(range(lim+1)) & sum3sqs)
    print(aupto(104)) # Michael S. Branicky, Mar 06 2021

Formula

a(n) = 6n/5 + O(log n). - Charles R Greathouse IV, Mar 14 2014; error term improved Jul 05 2024

A025427 Number of partitions of n into 3 nonzero squares.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 2, 0, 1, 1, 0, 0, 2, 1, 1, 1, 0, 2, 0, 0, 2, 1, 1, 1, 1, 1, 0, 1, 1, 1, 2, 0, 1, 3, 0, 1, 2, 0, 2, 0, 1, 2, 0, 0, 1, 3, 1, 1, 2, 1, 0, 1, 1, 2, 2, 1, 2, 1, 0, 0, 3, 1, 2, 1, 0, 3, 0, 1, 3, 2, 1, 0, 1, 2, 0, 1, 1, 2, 3, 0, 3, 2, 0, 1, 2, 1, 2
Offset: 0

Views

Author

Keywords

Comments

The non-vanishing values a(n) give the multiplicities for the numbers n appearing in A000408. See also A024795 where these numbers n are listed a(n) times. For the primitive case see A223730 and A223731. - Wolfdieter Lang, Apr 03 2013

Examples

			a(27) = 2 because  1^2 + 1^2 + 5^2 = 27  = 3^2 + 3^2 + 3^2. The second representation is not primitive (gcd(3,3,3) = 3 not 1).
		

Crossrefs

Cf. A000408, A024795, A223730 (multiplicities for the primitive case). - Wolfdieter Lang, Apr 03 2013
Column k=3 of A243148.

Programs

  • Haskell
    a025427 n = sum $ map f zs where
       f x = sum $ map (a010052 . (n - x -)) $
                       takeWhile (<= div (n - x) 2) $ dropWhile (< x) zs
       zs = takeWhile (< n) $ tail a000290_list
    -- Reinhard Zumkeller, Feb 26 2015
    
  • Maple
    A025427 := proc(n)
        local a,x,y,zsq ;
        a := 0 ;
        for x from 1 do
            if 3*x^2 > n then
                return a;
            end if;
            for y from x do
                if x^2+2*y^2 > n then
                    break;
                end if;
                zsq := n-x^2-y^2 ;
                if issqr(zsq) then
                    a := a+1 ;
                end if;
            end do:
        end do:
    end proc: # R. J. Mathar, Sep 15 2015
    # second Maple program:
    b:= proc(n, i, t) option remember; `if`(n=0, `if`(t=0, 1, 0),
          `if`(i<1 or t<1, 0, b(n, i-1, t)+
          `if`(i^2>n, 0, b(n-i^2, i, t-1))))
        end:
    a:= n-> b(n, isqrt(n), 3):
    seq(a(n), n=0..107);  # Alois P. Heinz, Jun 14 2025
  • Mathematica
    Count[PowersRepresentations[#, 3, 2], pr_ /; (Times @@ pr) > 0]& /@ Range[0, 120] (* Jean-François Alcover, Jan 30 2018 *)
  • PARI
    a(n)=if(n<3, return(0)); sum(i=sqrtint((n-1)\3)+1,sqrtint(n-2), my(t=n-i^2); sum(j=sqrtint((t-1)\2)+1,min(sqrtint(t-1),i), issquare(t-j^2))) \\ Charles R Greathouse IV, Aug 05 2024

Formula

a(A004214(n)) = 0; a(A000408(n)) > 0; a(A025414(n)) = n and a(m) != n for m < A025414(n). - Reinhard Zumkeller, Feb 26 2015
a(4n) = a(n). This is because if a number divisible by 4 is the sum of three squares, each of those squares must be even. - Robert Israel, Mar 09 2016
a(n) = Sum_{k=1..floor(n/3)} Sum_{i=k..floor((n-k)/2)} A010052(i) * A010052(k) * A010052(n-i-k). - Wesley Ivan Hurt, Apr 19 2019
a(n) = [x^n y^3] Product_{k>=1} 1/(1 - y*x^(k^2)). - Ilya Gutkovskiy, Apr 19 2019

A243148 Triangle read by rows: T(n,k) = number of partitions of n into k nonzero squares; n >= 0, 0 <= k <= n.

Original entry on oeis.org

1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1
Offset: 0

Views

Author

Alois P. Heinz, May 30 2014

Keywords

Examples

			T(20,5) = 2 = #{ (16,1,1,1,1), (4,4,4,4,4) } since 20 = 4^2 + 4 * 1^2 = 5 * 2^2.
Triangle T(n,k) begins:
  1;
  0, 1;
  0, 0, 1;
  0, 0, 0, 1;
  0, 1, 0, 0, 1;
  0, 0, 1, 0, 0, 1;
  0, 0, 0, 1, 0, 0, 1;
  0, 0, 0, 0, 1, 0, 0, 1;
  0, 0, 1, 0, 0, 1, 0, 0, 1;
  0, 1, 0, 1, 0, 0, 1, 0, 0, 1;
  0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1;
  0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1;
  0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1;
  (...)
		

Crossrefs

Columns k = 0..10 give: A000007, A010052 (for n>0), A025426, A025427, A025428, A025429, A025430, A025431, A025432, A025433, A025434.
Row sums give A001156.
T(2n,n) gives A111178.
T(n^2,n) gives A319435.
T(n,k) = 1 for n in A025284, A025321, A025357, A294675, A295670, A295797 (for k = 2..7, respectively).

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n=0, `if`(t=0, 1, 0),
          `if`(i<1 or t<1, 0, b(n, i-1, t)+
          `if`(i^2>n, 0, b(n-i^2, i, t-1))))
        end:
    T:= (n, k)-> b(n, isqrt(n), k):
    seq(seq(T(n, k), k=0..n), n=0..14);
    # second Maple program:
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          b(n, i-1)+(s-> `if`(s>n, 0, expand(x*b(n-s, i))))(i^2)))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n, isqrt(n))):
    seq(T(n), n=0..14);  # Alois P. Heinz, Oct 30 2021
  • Mathematica
    b[n_, i_, k_, t_] := b[n, i, k, t] = If[n == 0, If[t == 0, 1, 0], If[i < 1 || t < 1, 0, b[n, i-1, k, t] + If[i^2 > n, 0, b[n-i^2, i, k, t-1]]]]; T[n_, k_] := b[n, Sqrt[n] // Floor, k, k]; Table[Table[T[n, k], {k, 0, n}], {n, 0, 14}] // Flatten (* Jean-François Alcover, Jun 06 2014, after Alois P. Heinz *)
    T[n_, k_] := Count[PowersRepresentations[n, k, 2], r_ /; FreeQ[r, 0]]; T[0, 0] = 1; Table[T[n, k], {n, 0, 14}, {k, 0, n}] // Flatten (* Jean-François Alcover, Feb 19 2016 *)
  • PARI
    T(n,k,L=n)=if(n>k*L^2, 0, k>n-3, k==n, k<2, issquare(n,&n) && n<=L*k, k>n-6, n-k==3, L=min(L,sqrtint(n-k+1)); sum(r=0,min(n\L^2,k-1),T(n-r*L^2,k-r,L-1), n==k*L^2)) \\ M. F. Hasler, Aug 03 2020

Formula

T(n,k) = [x^n y^k] 1/Product_{j>=1} (1-y*x^A000290(j)).
Sum_{k=1..n} k * T(n,k) = A281541(n).
Sum_{k=1..n} n * T(n,k) = A276559(n).
Sum_{k=0..n} (-1)^k * T(n,k) = A292520(n).

A094942 Numbers having a unique partition into three squares.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 8, 10, 11, 12, 13, 14, 16, 19, 20, 21, 22, 24, 30, 32, 35, 37, 40, 42, 43, 44, 46, 48, 52, 56, 58, 64, 67, 70, 76, 78, 80, 84, 88, 91, 93, 96, 115, 120, 128, 133, 140, 142, 148, 160, 163, 168, 172, 176, 184, 190, 192, 208, 224, 232, 235
Offset: 1

Views

Author

T. D. Noe, May 24 2004

Keywords

Comments

Note that squares are allowed to be zero.
From Wolfdieter Lang, Apr 09 2013: (Start)
These are the numbers for which A000164(a(n)) = 1.
a(n) is the n-th largest number which has a representation as a sum of three squares (square 0 allowed), in exactly one way, if neither the order of terms nor the signs of the numbers to be squared are taken into account. The multiplicity with order and signs taken into account are A005875(a(n)).
These numbers are a proper subset of A000378.
(End)
Note that all these numbers are 4^k * A094739(n) for some k >= 0. - T. D. Noe, Nov 08 2013

Examples

			From _Wolfdieter Lang_, Apr 09 2013 (Start)
a(1) = 0 because 0 = 0^2 + 0^2 + 0^2 and 0 is the first number m with A000164(m)=1.
a(8) = 8 = 0^2 + 2^2 + 2^2, the 8th largest number m for which A000164(m) is 1.
(End)
		

Crossrefs

Cf. A025321 (numbers having a unique partition into three positive squares), A094739 (primitive n having a unique partition into three squares).
Cf. A000164, A005875, A000378, A224442 (two ways), A224443 (three ways).

Programs

  • Mathematica
    lim=25; nLst=Table[0, {lim^2}]; Do[n=a^2+b^2+c^2; If[n>0 && nRay Chandler, Oct 31 2019 *)

Formula

The sequence gives the increasingly ordered members of the set {m integer | A000164(m) = 1, m >= 0}.

Extensions

0 added by T. D. Noe, Apr 09 2013

A025395 Numbers that are the sum of 3 positive cubes in exactly 1 way.

Original entry on oeis.org

3, 10, 17, 24, 29, 36, 43, 55, 62, 66, 73, 80, 81, 92, 99, 118, 127, 129, 134, 136, 141, 153, 155, 160, 179, 190, 192, 197, 216, 218, 225, 232, 244, 253, 258, 270, 277, 281, 288, 307, 314, 342, 344, 345, 349, 352, 359, 368, 371, 375, 378, 397, 405, 408, 415, 433, 434, 440
Offset: 1

Views

Author

Keywords

Comments

A025456(a(n)) = 1. - Reinhard Zumkeller, Apr 23 2009

Crossrefs

Programs

  • Mathematica
    Reap[For[n = 1, n <= 500, n++, pr = Select[ PowersRepresentations[n, 3, 3], Times @@ # != 0 &]; If[pr != {} && Length[pr] == 1, Print[n, pr]; Sow[n]]]][[2, 1]] (* Jean-François Alcover, Jul 31 2013 *)

A152829 Numbers k whose squares can be written in exactly one way as a sum of three squares: k^2 = a^2 + b^2 + c^2 with 1 <= a <= b <= c.

Original entry on oeis.org

3, 6, 7, 12, 13, 14, 24, 26, 28, 48, 52, 56, 96, 104, 112, 192, 208, 224, 384, 416, 448, 768, 832, 896, 1536, 1664, 1792, 3072, 3328, 3584, 6144, 6656, 7168, 12288, 13312, 14336, 24576, 26624, 28672, 49152, 53248, 57344, 98304, 106496, 114688, 196608, 212992, 229376
Offset: 1

Views

Author

Peter Pein (petsie(AT)dordos.net), Dec 13 2008

Keywords

Comments

Numbers k such that k^2 is in A025321. - Joerg Arndt, Mar 22 2022
2k is a term iff k is also a term, so the conjecture from Colin Barker (see Formula) is true iff 3, 7, and 13 are the only odd terms. - Jon E. Schoenfield, Mar 22 2022

Examples

			9 is not in this sequence because 9^2 = 1^2 + 4^2 + 8^2 = 3^2 + 6^2 + 6^2 = 4^2 + 4^2 + 7^2.
7 is in this sequence because 7^2 = 2^2 + 3^2 + 6^2 is the only way to write 7^2 as a sum of three squares.
		

Crossrefs

Cf. A025321.

Programs

  • C
    #include 
    #include 
    int main (int argc, char *argv[]) {
        long n,n2,a,a2,b,b2,c,c2; int s = 0; n=atol(argv[1]); n2=n*n;
        for (a=1; a 3sq.txt
    # gives the terms less than 1000

Formula

Guessed o.g.f.: x*(x^4 + 6*x^3 + 7*x^2 + 6*x + 3)/(1 - 2*x^3).
{k: A025427(k^2)=1}. - R. J. Mathar, Dec 15 2008
Conjecture: a(n) = 2*a(n-3) for n > 5. - Colin Barker, Mar 12 2012

Extensions

a(25)-a(36) (from comment) verified and added by Donovan Johnson, Nov 08 2013
a(37)-a(48) from Jon E. Schoenfield, Mar 22 2022
Showing 1-6 of 6 results.