cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 104 results. Next

A267702 Numbers that are the sum of 3 nonzero squares (A000408) and the sum of 2 positive cubes (A003325).

Original entry on oeis.org

9, 35, 54, 65, 72, 91, 126, 133, 152, 189, 217, 224, 243, 250, 280, 341, 344, 370, 432, 468, 513, 539, 576, 637, 686, 728, 730, 737, 756, 793, 854, 945, 1001, 1027, 1064, 1072, 1125, 1216, 1241, 1332, 1339, 1358, 1395, 1456, 1458, 1512, 1547, 1674, 1729, 1736, 1755, 1843, 1853
Offset: 1

Views

Author

Altug Alkan, Jan 23 2016

Keywords

Comments

Intersection of A000408 and A003325.
Sequence focuses on the solutions of equation x^3 + y^3 = a^2 + b^2 + c^2 where x, y, a, b, c > 0.

Examples

			9 is a term because 9 = 1^3 + 2^3 = 1^2 + 2^2 + 2^2.
35 is a term because 35 = 2^3 + 3^3 = 1^2 + 3^2 + 5^2.
54 is a term because 54 = 3^3 + 3^3 = 3^2 + 3^2 + 6^2.
		

Crossrefs

Programs

  • Maple
    N:= 1000: # to get all terms <= N
    S3:= {seq(seq(seq(a^2+b^2+c^2, c = b .. floor(sqrt(N-a^2-b^2))),
    b=a .. floor(sqrt((N-a^2)/2))), a = 1 .. floor(sqrt(N/3)))}:
    C2:= {seq(seq(a^3+b^3, b = a .. floor((N-a^3)^(1/3))),a = 1 .. floor((N/2)^(1/3)))}:
    sort(convert(S3 intersect C2, list)); # Robert Israel, Jan 25 2016
  • PARI
    isA000408(n) = {my(a, b); a=1; while(a^2+1A003325(n)=#select(v->min(v[1], v[2])>0, thue(T, n))>0;
    for(n=3, 1e4, if(isA000408(n) && isA003325(n), print1(n, ", ")));

A024797 Positions of primes in A000408.

Original entry on oeis.org

1, 4, 7, 9, 15, 22, 24, 32, 36, 37, 41, 46, 54, 58, 64, 67, 72, 74, 76, 89, 94, 96, 104, 110, 114, 123, 128, 130, 139, 143, 154, 167, 169, 171, 177, 186, 189, 200, 207, 210, 212, 220, 232, 237, 240, 251, 256, 264, 265, 268, 285, 290, 298, 305, 307, 314, 322, 324, 334, 343
Offset: 1

Views

Author

Keywords

Extensions

Corrected and extended by David W. Wilson, May 15 1997

A024798 Positions of even numbers in A000408.

Original entry on oeis.org

2, 5, 6, 8, 11, 12, 13, 16, 18, 20, 21, 23, 25, 27, 28, 30, 33, 34, 38, 40, 42, 44, 45, 47, 49, 51, 53, 55, 56, 57, 59, 62, 63, 65, 68, 69, 71, 73, 75, 77, 79, 81, 82, 84, 87, 90, 92, 93, 95, 97, 99, 100, 102, 105, 106, 108, 111, 113, 115, 117, 118, 120, 122, 124, 125, 127, 129, 131, 132
Offset: 1

Views

Author

Keywords

A024799 Positions of odd numbers in A000408.

Original entry on oeis.org

1, 3, 4, 7, 9, 10, 14, 15, 17, 19, 22, 24, 26, 29, 31, 32, 35, 36, 37, 39, 41, 43, 46, 48, 50, 52, 54, 58, 60, 61, 64, 66, 67, 70, 72, 74, 76, 78, 80, 83, 85, 86, 88, 89, 91, 94, 96, 98, 101, 103, 104, 107, 109, 110, 112, 114, 116, 119, 121, 123, 126, 128, 130, 133, 135, 136, 139, 141
Offset: 1

Views

Author

Keywords

A024800 a(n) = position of 3*(n^2) in A000408.

Original entry on oeis.org

1, 5, 14, 28, 48, 73, 103, 138, 179, 226, 277, 333, 395, 461, 531, 608, 691, 777, 869, 966, 1068, 1175, 1287, 1403, 1526, 1653, 1783, 1921, 2063, 2209, 2362, 2518, 2682, 2849, 3022, 3197, 3378, 3567, 3759, 3956, 4160, 4366, 4578, 4795, 5018, 5245, 5476, 5713
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A000408.

Extensions

Corrected and extended by David W. Wilson, May 15 1997

A024801 Position of n^2 + 5 in A000408.

Original entry on oeis.org

2, 3, 6, 10, 16, 22, 33, 43, 56, 70, 87, 104, 124, 146, 170, 193, 221, 249, 280, 311, 345, 380, 416, 455, 495, 536, 581, 627, 674, 722, 772, 823, 878, 933, 992, 1050, 1110, 1172, 1236, 1301, 1369, 1438, 1508, 1581, 1655, 1728, 1806, 1885, 1966, 2047, 2131, 2217
Offset: 1

Views

Author

Keywords

Extensions

Corrected and extended by David W. Wilson, May 15 1997

A024802 a(n) = position of n^2 + (n+1)^2 + (n+2)^2 in A000408.

Original entry on oeis.org

6, 15, 30, 50, 75, 104, 140, 181, 228, 279, 335, 396, 463, 533, 610, 693, 779, 870, 968, 1070, 1177, 1289, 1405, 1528, 1655, 1785, 1923, 2064, 2211, 2364, 2520, 2684, 2851, 3023, 3199, 3380, 3569, 3761, 3958, 4162, 4368, 4580, 4797, 5019, 5247, 5478, 5715
Offset: 1

Views

Author

Keywords

Extensions

Corrected and extended by David W. Wilson, May 15 1997

A005897 a(n) = 6*n^2 + 2 for n > 0, a(0)=1.

Original entry on oeis.org

1, 8, 26, 56, 98, 152, 218, 296, 386, 488, 602, 728, 866, 1016, 1178, 1352, 1538, 1736, 1946, 2168, 2402, 2648, 2906, 3176, 3458, 3752, 4058, 4376, 4706, 5048, 5402, 5768, 6146, 6536, 6938, 7352, 7778, 8216, 8666, 9128, 9602, 10088, 10586
Offset: 0

Views

Author

Keywords

Comments

Number of points on surface of 3-dimensional cube in which each face has a square grid of dots drawn on it (with n+1 points along each edge, including the corners).
Coordination sequence for b.c.c. lattice.
Also coordination sequence for 3D uniform tiling with tile an equilateral triangular prism. - N. J. A. Sloane, Feb 06 2018
Binomial transform of [1, 7, 11, 1, -1, 1, -1, 1, ...]. - Gary W. Adamson, Oct 22 2007
First differences of A005898. - Jonathan Vos Post, Feb 06 2011
Apart from the first term, numbers of the form (r^2+2*s^2)*n^2+2 = (r*n)^2+(s*n-1)^2+(s*n+1)^2: in this case is r=2, s=1. After 8, all terms are in A000408. - Bruno Berselli, Feb 07 2012
For n > 0, the sequence of last digits (i.e., a(n) mod 10) is (8, 6, 6, 8, 2) repeating forever. - M. F. Hasler, Apr 05 2016
Number of cubes of edge length 1 required to make a hollow cube of edge length n+1. - Peter M. Chema, Apr 01 2017
a(n) is the number of pieces on the outside of a (n+1) X (n+1) X (n+1) Rubik's cube. For n > 0: corners = 8, edges = 12*(n-1), center pieces = 6*(n-1)^2. - Demilade Runsewe, Jan 08 2025

Examples

			For n = 1 we get the 8 corners of the cube; for n = 2 each face has 9 points, for a total of 8 + 12 + 6 = 26.
		

References

  • H. S. M. Coxeter, "Polyhedral numbers," in R. S. Cohen et al., editors, For Dirk Struik. Reidel, Dordrecht, 1974, pp. 25-35.
  • Gmelin Handbook of Inorg. and Organomet. Chem., 8th Ed., 1994, TYPIX search code (194) hP4
  • B. Grünbaum, Uniform tilings of 3-space, Geombinatorics, 4 (1994), 49-56. See tiling #11.
  • R. W. Marks and R. B. Fuller, The Dymaxion World of Buckminster Fuller. Anchor, NY, 1973, p. 46.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

See A005898 for partial sums.
The 28 uniform 3D tilings: cab: A299266, A299267; crs: A299268, A299269; fcu: A005901, A005902; fee: A299259, A299265; flu-e: A299272, A299273; fst: A299258, A299264; hal: A299274, A299275; hcp: A007899, A007202; hex: A005897, A005898; kag: A299256, A299262; lta: A008137, A299276; pcu: A005899, A001845; pcu-i: A299277, A299278; reo: A299279, A299280; reo-e: A299281, A299282; rho: A008137, A299276; sod: A005893, A005894; sve: A299255, A299261; svh: A299283, A299284; svj: A299254, A299260; svk: A010001, A063489; tca: A299285, A299286; tcd: A299287, A299288; tfs: A005899, A001845; tsi: A299289, A299290; ttw: A299257, A299263; ubt: A299291, A299292; bnn: A007899, A007202. See the Proserpio link in A299266 for overview.

Programs

  • Haskell
    a005897 n = if n == 0 then 1 else 6 * n ^ 2 + 2 -- Reinhard Zumkeller, Apr 27 2014
  • Magma
    [1] cat [6*n^2 + 2: n in [1..50]]; // Vincenzo Librandi, Oct 26 2011
    
  • Maple
    A005897:=-(z+1)*(z**2+4*z+1)/(z-1)**3; # conjectured (correctly) by Simon Plouffe in his 1992 dissertation
  • Mathematica
    Join[{1},6Range[50]^2+2] (* or *) Join[{1},LinearRecurrence[{3,-3,1},{8,26,56},50]] (* Harvey P. Dale, Oct 25 2011 *)
  • PARI
    a(n)=if(n,6*n^2+2,1) \\ Charles R Greathouse IV, Mar 06 2014
    
  • PARI
    x='x+O('x^30); Vec(serlaplace(2*(1 + 3*x + 3*x^2)*exp(x) - 1)) \\ G. C. Greubel, Dec 01 2017
    

Formula

G.f.: (1+x)*(1+4*x+x^2)/(1-x)^3. - Simon Plouffe
a(0) = 1, a(n) = (n+1)^3 - (n-1)^3. - Ilya Nikulshin (ilyanik(AT)gmail.com), Aug 11 2009
a(0)=1, a(1)=8, a(2)=26, a(3)=56; for n>3, a(n) = 3*a(n-1)-3*a(n-2)+a(n-3). - Harvey P. Dale, Oct 25 2011
a(n) = A033581(n) + 2. - Reinhard Zumkeller, Apr 27 2014
E.g.f.: 2*(1 + 3*x + 3*x^2)*exp(x) - 1. - G. C. Greubel, Dec 01 2017
a(n) = A000567(n+1) + A045944(n-1), for n>0. See illustration. - John Elias, Mar 12 2022
a(n) = 2*A056107(n), n>0. - R. J. Mathar, May 30 2022
Sum_{n>=0} 1/a(n) = 3/4+ Pi*sqrt(3)*coth(Pi/sqrt 3)/12 = 1.2282133.. - R. J. Mathar, Apr 27 2024
a(n) = 8 + 12*(n-1) + 6*(n-1)^2 for n > 0. - Demilade Runsewe, Jan 08 2025

A002145 Primes of the form 4*k + 3.

Original entry on oeis.org

3, 7, 11, 19, 23, 31, 43, 47, 59, 67, 71, 79, 83, 103, 107, 127, 131, 139, 151, 163, 167, 179, 191, 199, 211, 223, 227, 239, 251, 263, 271, 283, 307, 311, 331, 347, 359, 367, 379, 383, 419, 431, 439, 443, 463, 467, 479, 487, 491, 499, 503, 523, 547, 563, 571
Offset: 1

Views

Author

Keywords

Comments

Or, odd primes p such that -1 is not a square mod p, i.e., the Legendre symbol (-1/p) = -1. [LeVeque I, p. 66]. - N. J. A. Sloane, Jun 28 2008
Primes which are not the sum of two squares, see the comment in A022544. - Artur Jasinski, Nov 15 2006
Natural primes which are also Gaussian primes. (It is a common error to refer to this sequence as "the Gaussian primes".)
Inert rational primes in the field Q(sqrt(-1)). - N. J. A. Sloane, Dec 25 2017
Numbers n such that the product of coefficients of (2n)-th cyclotomic polynomial equals -1. - Benoit Cloitre, Oct 22 2002
For p and q both belonging to the sequence, exactly one of the congruences x^2 = p (mod q), x^2 = q (mod p) is solvable, according to Gauss reciprocity law. - Lekraj Beedassy, Jul 17 2003
Also primes p that divide L((p-1)/2) or L((p+1)/2), where L(n) = A000032(n), the Lucas numbers. Union of A122869 and A122870. - Alexander Adamchuk, Sep 16 2006
Also odd primes p that divide ((p-1)!! + 1) or ((p-2)!! + 1). - Alexander Adamchuk, Nov 30 2006
Also odd primes p that divide ((p-1)!! - 1) or ((p-2)!! - 1). - Alexander Adamchuk, Apr 18 2007
This sequence is a proper subset of the set of the absolute values of negative fundamental discriminants (A003657). - Paul Muljadi, Mar 29 2008
Bernard Frénicle de Bessy discovered that such primes cannot be the hypotenuse of a Pythagorean triangle in opposition to primes of the form 4*n+1 (see A002144). - after Paul Curtz, Sep 10 2008
A079261(a(n)) = 1; complement of A145395. - Reinhard Zumkeller, Oct 12 2008
Subsequence of A007970. - Reinhard Zumkeller, Jun 18 2011
A151763(a(n)) = -1.
Primes p such that p XOR 2 = p - 2. Brad Clardy, Oct 25 2011 (Misleading in the sense that this is a formula for the super-sequence A004767. - R. J. Mathar, Jul 28 2014)
It appears that each term of A004767 is the mean of two terms of this subsequence of primes therein; cf. A245203. - M. F. Hasler, Jul 13 2014
Numbers n > 2 such that ((n-2)!!)^2 == 1 (mod n). - Thomas Ordowski, Jul 24 2016
Odd numbers n > 1 such that ((n-1)!!)^2 == 1 (mod n). - Thomas Ordowski, Jul 25 2016
Primes p such that (p-2)!! == (p-3)!! (mod p). - Thomas Ordowski, Jul 28 2016
See Granville and Martin for a discussion of the relative numbers of primes of the form 4k+1 and 4k+3. - Editors, May 01 2017
Sometimes referred to as Blum primes for their connection to A016105 and the Blum Blum Shub generator. - Charles R Greathouse IV, Jun 14 2018
Conjecture: a(n) for n > 4 can be written as a sum of 3 primes of the form 4k+1, which would imply that primes of the form 4k+3 >= 23 can be decomposed into a sum of 6 nonzero squares. - Thomas Scheuerle, Feb 09 2023

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 870.
  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See pp. 146-147.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979, p. 219, th. 252.
  • W. J. LeVeque, Topics in Number Theory. Addison-Wesley, Reading, MA, 2 vols., 1956, Vol. 1, p. 66.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 90.

Crossrefs

Apart from initial term, same as A045326.
Cf. A016105.
Cf. A004614 (multiplicative closure).

Programs

  • Haskell
    a002145 n = a002145_list !! (n-1)
    a002145_list = filter ((== 1) . a010051) [3, 7 ..]
    -- Reinhard Zumkeller, Aug 02 2015, Sep 23 2011
    
  • Magma
    [4*n+3 : n in [0..142] | IsPrime(4*n+3)]; // Arkadiusz Wesolowski, Nov 15 2013
    
  • Maple
    A002145 := proc(n)
        option remember;
        if n = 1 then
            3;
        else
            a := nextprime(procname(n-1)) ;
            while a mod 4 <>  3 do
                a := nextprime(a) ;
            end do;
            return a;
        end if;
    end proc:
    seq(A002145(n),n=1..20) ; # R. J. Mathar, Dec 08 2011
  • Mathematica
    Select[4Range[150] - 1, PrimeQ] (* Alonso del Arte, Dec 19 2013 *)
    Select[ Prime@ Range[2, 110], Length@ PowersRepresentations[#^2, 2, 2] == 1 &] (* or *)
    Select[ Prime@ Range[2, 110], JacobiSymbol[-1, #] == -1 &] (* Robert G. Wilson v, May 11 2014 *)
  • PARI
    forprime(p=2,1e3,if(p%4==3,print1(p", "))) \\ Charles R Greathouse IV, Jun 10 2011
    
  • Sage
    def A002145_list(n): return [p for p in prime_range(1, n + 1) if p % 4 == 3]  # Peter Luschny, Jul 29 2014

Formula

Remove from A000040 terms that are in A002313.
Intersection of A000040 and A004767. - Alonso del Arte, Apr 22 2014
From Vaclav Kotesovec, Apr 30 2020: (Start)
Product_{k>=1} (1 - 1/a(k)^2) = A243379.
Product_{k>=1} (1 + 1/a(k)^2) = A243381.
Product_{k>=1} (1 - 1/a(k)^3) = A334427.
Product_{k>=1} (1 + 1/a(k)^3) = A334426.
Product_{k>=1} (1 - 1/a(k)^4) = A334448.
Product_{k>=1} (1 + 1/a(k)^4) = A334447.
Product_{k>=1} (1 - 1/a(k)^5) = A334452.
Product_{k>=1} (1 + 1/a(k)^5) = A334451. (End)
From Vaclav Kotesovec, May 05 2020: (Start)
Product_{k>=1} (1 + 1/a(k)) / (1 + 1/A002144(k)) = Pi/(4*A064533^2) = 1.3447728438248695625516649942427635670667319092323632111110962...
Product_{k>=1} (1 - 1/a(k)) / (1 - 1/A002144(k)) = Pi/(8*A064533^2) = 0.6723864219124347812758324971213817835333659546161816055555481... (End)
Sum_{k >= 1} 1/a(k)^s = (1/2) * Sum_{n >= 1 odd numbers} moebius(n) * log(2 * (2^(n*s) - 1) * (n*s - 1)! * zeta(n*s) / (Pi^(n*s) * abs(EulerE(n*s - 1))))/n, s >= 3 odd number. - Dimitris Valianatos, May 20 2020

Extensions

More terms from James Sellers, Apr 21 2000

A003072 Numbers that are the sum of 3 positive cubes.

Original entry on oeis.org

3, 10, 17, 24, 29, 36, 43, 55, 62, 66, 73, 80, 81, 92, 99, 118, 127, 129, 134, 136, 141, 153, 155, 160, 179, 190, 192, 197, 216, 218, 225, 232, 244, 251, 253, 258, 270, 277, 281, 288, 307, 314, 342, 344, 345, 349, 352, 359, 368, 371, 375, 378, 397, 405, 408, 415, 433, 434
Offset: 1

Views

Author

Keywords

Comments

A119977 is a subsequence; if m is a term then there exists at least one k>0 such that m-k^3 is a term of A003325. - Reinhard Zumkeller, Jun 03 2006
A025456(a(n)) > 0. - Reinhard Zumkeller, Apr 23 2009
Davenport proved that a(n) << n^(54/47 + e) for every e > 0. - Charles R Greathouse IV, Mar 26 2012

Examples

			a(11) = 73 = 1^3 + 2^3 + 4^3, which is sum of three cubes.
a(15) = 99 = 2^3 + 3^3 + 4^3, which is sum of three cubes.
		

Crossrefs

Subsequence of A004825.
Cf. A003325, A024981, A057904 (complement), A010057, A000578, A023042 (subsequence of cubes).
Cf. A###### (x, y) = Numbers that are the sum of x nonzero y-th powers:
- squares: A000404 (2, 2), A000408 (3, 2), A000414 (4, 2), A047700 (5, 2);
- cubes: A003325 (2, 3), A003072 (3, 3), A003327 (4, 3), A003328 (5, 3), A003329 (6, 3), A003330 (7, 3), A003331 (8, 3), A003332 (9, 3), A003333 (10, 3), A003334 (11, 3), A003335 (12, 3);
- fourth powers: A003336 (2, 4), A003337 (3, 4), A003338 (4, 4), A003339 (5, 4), A003340 (6, 4), A003341 (7, 4), A003342 (8, 4), A003343 (9, 4), A003344 (10, 4), A003345 (11, 4), A003346 (12, 4);
- fifth powers: A003347 (2, 5), A003348 (3, 5), A003349 (4, 5), A003350 (5, 5), A003351 (6, 5), A003352 (7, 5), A003353 (8, 5), A003354 (9, 5), A003355 (10, 5), A003356 (11, 5), A003357 (12, 5);
- sixth powers: A003358 (2, 6), A003359 (3, 6), A003360 (4, 6), A003361 (5, 6), A003362 (6, 6), A003363 (7, 6), A003364 (8, 6), A003365 (9, 6), A003366 (10, 6), A003367 (11, 6), A003368 (12, 6);
- seventh powers: A003369 (2, 7), A003370 (3, 7), A003371 (4, 7), A003372 (5, 7), A003373 (6, 7), A003374 (7, 7), A003375 (8, 7), A003376 (9, 7), A003377 (10, 7), A003378 (11, 7), A003379 (12, 7);
- eighth powers: A003380 (2, 8), A003381 (3, 8), A003382 (4, 8), A003383 (5, 8), A003384 (6, 8), A003385 (7, 8), A003386 (8, 8), A003387 (9, 8), A003388 (10, 8), A003389 (11, 8), A003390 (12, 8);
- ninth powers: A003391 (2, 9), A003392 (3, 9), A003393 (4, 9), A003394 (5, 9), A003395 (6, 9), A003396 (7, 9), A003397 (8, 9), A003398 (9, 9), A003399 (10, 9), A004800 (11, 9), A004801 (12, 9);
- tenth powers: A004802 (2, 10), A004803 (3, 10), A004804 (4, 10), A004805 (5, 10), A004806 (6, 10), A004807 (7, 10), A004808 (8, 10), A004809 (9, 10), A004810 (10, 10), A004811 (11, 10), A004812 (12, 10);
- eleventh powers: A004813 (2, 11), A004814 (3, 11), A004815 (4, 11), A004816 (5, 11), A004817 (6, 11), A004818 (7, 11), A004819 (8, 11), A004820 (9, 11), A004821 (10, 11), A004822 (11, 11), A004823 (12, 11).

Programs

  • Haskell
    a003072 n = a003072_list !! (n-1)
    a003072_list = filter c3 [1..] where
       c3 x = any (== 1) $ map (a010057 . fromInteger) $
                           takeWhile (> 0) $ map (x -) $ a003325_list
    -- Reinhard Zumkeller, Mar 24 2012
  • Maple
    isA003072 := proc(n)
        local x,y,z;
        for x from 1 do
            if 3*x^3 > n then
                return false;
            end if;
            for y from x do
                if x^3+2*y^3 > n then
                    break;
                end if;
                if isA000578(n-x^3-y^3) then
                    return true;
                end if;
            end do:
        end do:
    end proc:
    for n from 1 to 1000 do
        if isA003072(n) then
            printf("%d,",n) ;
        end if;
    end do: # R. J. Mathar, Jan 23 2016
  • Mathematica
    Select[Range[435], (p = PowersRepresentations[#, 3, 3]; (Select[p, #[[1]] > 0 && #[[2]] > 0 && #[[3]] > 0 &] != {})) &] (* Jean-François Alcover, Apr 29 2011 *)
    With[{upto=500},Select[Union[Total/@Tuples[Range[Floor[Surd[upto-2,3]]]^3,3]],#<=upto&]] (* Harvey P. Dale, Oct 25 2021 *)
  • PARI
    sum(n=1,11,x^(n^3),O(x^1400))^3 /* Then [i|i<-[1..#%],polcoef(%,i)] gives the list of powers with nonzero coefficient. - M. F. Hasler, Aug 02 2020 */
    
  • PARI
    list(lim)=my(v=List(),k,t); lim\=1; for(x=1,sqrtnint(lim-2,3), for(y=1, min(sqrtnint(lim-x^3-1,3),x), k=x^3+y^3; for(z=1,min(sqrtnint(lim-k,3), y), listput(v, k+z^3)))); Set(v) \\ Charles R Greathouse IV, Sep 14 2015
    

Formula

{n: A025456(n) >0}. - R. J. Mathar, Jun 15 2018

Extensions

Incorrect program removed by David A. Corneth, Aug 01 2020
Showing 1-10 of 104 results. Next