cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A025372 Numbers that are the sum of 4 nonzero squares in 7 or more ways.

Original entry on oeis.org

130, 135, 138, 148, 150, 154, 162, 170, 172, 175, 178, 180, 182, 183, 186, 187, 189, 190, 195, 196, 198, 199, 202, 207, 210, 213, 214, 215, 217, 218, 220, 222, 223, 225, 226, 228, 229, 230, 231, 234, 235, 237, 238, 242, 243, 244, 245, 246, 247, 250, 252, 253, 255, 258
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    N:= 1000: # for terms <= N
    B:= Vector(N):
    for i from 1 while 4*i^2 <= N do
      for j from i while i^2 + 3*j^2 <= N do
        for k from j while i^2 + j^2 + 2*k^2 <= N do
          for l from k do
            m:= i^2 + j^2 + k^2 + l^2;
            if m > N then break fi;
            B[m]:= B[m]+1
    od od od od:
    select(t -> B[t] >= 7, [$1..N]); # Robert Israel, Oct 23 2020

Formula

{n: A025428(n) >= 7}. - R. J. Mathar, Jun 15 2018

A345151 Numbers that are the sum of four third powers in exactly seven ways.

Original entry on oeis.org

13104, 18928, 19376, 20755, 21203, 22743, 24544, 24570, 24787, 25172, 25928, 27755, 27846, 28917, 29582, 31031, 31248, 31528, 32858, 34056, 34713, 35289, 35317, 35441, 35497, 35712, 36190, 36288, 36610, 36890, 36946, 38080, 39221, 39440, 39464, 39851, 39942
Offset: 1

Views

Author

David Consiglio, Jr., Jun 09 2021

Keywords

Comments

Differs from A345150 at term 6 because 21896 = 1^3 + 11^3 + 19^3 + 22^3 = 2^3 + 2^3 + 12^3 + 26^3 = 2^3 + 3^3 + 19^3 + 23^3 = 2^3 + 5^3 + 15^3 + 25^3 = 3^3 + 10^3 + 16^3 + 24^3 = 3^3 + 17^3 + 19^3 + 19^3 = 4^3 + 6^3 + 20^3 + 22^3 = 5^3 + 8^3 + 14^3 + 25^3 = 7^3 + 11^3 + 17^3 + 23^3 = 8^3 + 9^3 + 19^3 + 22^3.

Examples

			13104 is a term because 13104 = 1^3 + 10^3 + 16^3 + 18^3  = 1^3 + 11^3 + 14^3 + 19^3  = 2^3 + 9^3 + 15^3 + 19^3  = 4^3 + 6^3 + 14^3 + 20^3  = 4^3 + 9^3 + 10^3 + 21^3  = 5^3 + 7^3 + 11^3 + 21^3  = 8^3 + 9^3 + 14^3 + 19^3.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**3 for x in range(1, 1000)]
    for pos in cwr(power_terms, 4):
        tot = sum(pos)
        keep[tot] += 1
    rets = sorted([k for k, v in keep.items() if v == 7])
    for x in range(len(rets)):
        print(rets[x])

A025382 Numbers that are the sum of 4 distinct nonzero squares in exactly 7 ways.

Original entry on oeis.org

190, 198, 231, 255, 290, 303, 326, 335, 358, 369, 381, 385, 418, 425, 439, 475, 481, 491, 497, 499, 529, 553, 557, 563, 569, 587, 593, 612, 613, 619, 644, 661, 676, 733, 760, 792, 1012, 1132, 1160, 1228, 1252, 1304, 1432, 1672, 2448, 2576, 2704, 3040, 3168, 4048
Offset: 1

Views

Author

Keywords

Crossrefs

Formula

{n: A025443(n) = 7}. - R. J. Mathar, Jun 15 2018
Showing 1-3 of 3 results.