cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A025335 Numbers that are the sum of 3 nonzero squares in 7 or more ways.

Original entry on oeis.org

341, 369, 374, 446, 461, 486, 494, 506, 509, 521, 545, 549, 566, 569, 581, 594, 614, 621, 626, 629, 641, 654, 666, 677, 686, 689, 701, 710, 726, 729, 731, 734, 749, 761, 770, 774, 789, 794, 797, 801, 806, 809, 810, 818, 821, 825, 833, 846, 849, 854, 857, 866, 869, 881
Offset: 1

Views

Author

Keywords

Crossrefs

A025371 Numbers that are the sum of 4 nonzero squares in 6 or more ways.

Original entry on oeis.org

90, 124, 130, 133, 135, 138, 147, 148, 150, 154, 156, 157, 159, 162, 163, 165, 166, 170, 171, 172, 174, 175, 177, 178, 180, 182, 183, 186, 187, 188, 189, 190, 193, 195, 196, 198, 199, 201, 202, 203, 205, 207, 210, 213, 214, 215, 217, 218, 219, 220, 222, 223, 225, 226
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Python
    limit = 226
    from functools import lru_cache
    sq = [k**2 for k in range(1, int(limit**.5)+2) if k**2 + 3 <= limit]
    sqs = set(sq)
    @lru_cache(maxsize=None)
    def findsums(n, m):
      if m == 1: return {(n, )} if n in sqs else set()
      return set(tuple(sorted(t+(s,))) for s in sqs for t in findsums(n-s, m-1))
    print([n for n in range(4, limit+1) if len(findsums(n, 4)) >= 6]) # Michael S. Branicky, Apr 20 2021

Formula

{n: A025428(n) >= 6}. Union of A025372 and A025362. - R. J. Mathar, Jun 15 2018

A345150 Numbers that are the sum of four third powers in seven or more ways.

Original entry on oeis.org

13104, 18928, 19376, 20755, 21203, 21896, 22743, 24544, 24570, 24787, 25172, 25928, 27720, 27755, 27846, 28917, 29582, 30429, 31031, 31248, 31339, 31402, 31528, 32858, 33579, 34056, 34624, 34713, 34776, 35289, 35317, 35441, 35497, 35712, 36162, 36190, 36225
Offset: 1

Views

Author

David Consiglio, Jr., Jun 09 2021

Keywords

Examples

			13104 is a term because 13104 = 1^3 + 10^3 + 16^3 + 18^3  = 1^3 + 11^3 + 14^3 + 19^3  = 2^3 + 9^3 + 15^3 + 19^3  = 4^3 + 6^3 + 14^3 + 20^3  = 4^3 + 9^3 + 10^3 + 21^3  = 5^3 + 7^3 + 11^3 + 21^3  = 8^3 + 9^3 + 14^3 + 19^3.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**3 for x in range(1, 1000)]
    for pos in cwr(power_terms, 4):
        tot = sum(pos)
        keep[tot] += 1
    rets = sorted([k for k, v in keep.items() if v >= 7])
    for x in range(len(rets)):
        print(rets[x])

A025373 Numbers that are the sum of 4 nonzero squares in 8 or more ways.

Original entry on oeis.org

130, 138, 150, 154, 162, 175, 178, 180, 186, 195, 196, 198, 202, 207, 210, 213, 214, 217, 218, 220, 222, 223, 225, 226, 228, 230, 231, 234, 235, 237, 238, 242, 243, 244, 246, 247, 250, 252, 253, 255, 258, 259, 262, 265, 266, 267, 268, 270, 271, 273, 274, 275, 276, 277
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    selQ[n_] := Length[ Select[ PowersRepresentations[n, 4, 2], Times @@ # != 0 &]] >= 8; Select[ Range[300], selQ] (* Jean-François Alcover, Oct 03 2013 *)

Formula

{n: A025428(n) >= 8}. - R. J. Mathar, Jun 15 2018

A344800 Numbers that are the sum of five squares in seven or more ways.

Original entry on oeis.org

77, 83, 85, 88, 91, 94, 99, 101, 104, 106, 107, 109, 112, 115, 116, 118, 119, 120, 122, 123, 124, 125, 126, 127, 128, 130, 131, 133, 134, 136, 137, 138, 139, 140, 141, 142, 143, 144, 146, 147, 148, 149, 150, 151, 152, 154, 155, 156, 157, 158, 159, 160, 161
Offset: 1

Views

Author

Sean A. Irvine, May 28 2021

Keywords

Crossrefs

A025391 Numbers that are the sum of 4 distinct nonzero squares in 7 or more ways.

Original entry on oeis.org

190, 198, 210, 222, 231, 238, 246, 255, 270, 282, 286, 290, 294, 302, 303, 306, 310, 315, 318, 326, 330, 334, 335, 338, 342, 345, 350, 351, 354, 357, 358, 363, 366, 369, 370, 374, 375, 378, 381, 382, 385, 386, 387, 390, 393, 394, 398, 399, 402, 405, 406, 407, 410, 411
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A025372.

Programs

  • Maple
    N:= 1000: # for terms <= N
    G:= mul(1+x^(i^2)*y, i=1..floor(sqrt(N))):
    G4:= series(coeff(G,y,4),x,N+1):
    A:= select(t -> coeff(G4,x,t) >= 7, [$1..N]); # Robert Israel, Nov 19 2023
  • Mathematica
    With[{nn=25},Select[Select[Tally[Total/@Subsets[Range[nn]^2,{4}]],#[[2]]> 6&][[All,1]]//Union,#<=(nn^2-14)&]] (* Harvey P. Dale, Jun 21 2021 *)

Formula

{n: A025443(n) >= 7}. - R. J. Mathar, Jun 15 2018
Showing 1-6 of 6 results.