cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A025334 Numbers that are the sum of 3 nonzero squares in 6 or more ways.

Original entry on oeis.org

209, 297, 306, 314, 321, 326, 329, 341, 342, 369, 374, 425, 426, 434, 441, 446, 458, 459, 461, 486, 489, 494, 497, 506, 509, 513, 521, 530, 531, 534, 542, 545, 546, 549, 558, 561, 566, 569, 581, 593, 594, 602, 605, 614, 621, 626, 629, 633, 641, 649, 650, 654, 657, 659
Offset: 1

Views

Author

Keywords

Crossrefs

A345148 Numbers that are the sum of four third powers in six or more ways.

Original entry on oeis.org

6883, 12411, 13104, 13923, 14112, 14581, 14896, 14904, 15561, 15876, 16317, 16640, 17208, 17479, 17992, 18739, 18865, 18928, 19035, 19080, 19376, 19665, 19712, 19763, 19880, 20007, 20384, 20755, 20979, 21203, 21231, 21420, 21707, 21896, 22409, 22617, 22743
Offset: 1

Views

Author

David Consiglio, Jr., Jun 09 2021

Keywords

Examples

			6883 is a term because 6883 = 2^3 + 2^3 + 2^3 + 18^3  = 2^3 + 4^3 + 14^3 + 14^3  = 3^3 + 7^3 + 7^3 + 17^3  = 3^3 + 10^3 + 13^3 + 13^3  = 4^3 + 10^3 + 10^3 + 15^3  = 7^3 + 8^3 + 8^3 + 16^3.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**3 for x in range(1, 1000)]
    for pos in cwr(power_terms, 4):
        tot = sum(pos)
        keep[tot] += 1
    rets = sorted([k for k, v in keep.items() if v >= 6])
    for x in range(len(rets)):
        print(rets[x])

A025372 Numbers that are the sum of 4 nonzero squares in 7 or more ways.

Original entry on oeis.org

130, 135, 138, 148, 150, 154, 162, 170, 172, 175, 178, 180, 182, 183, 186, 187, 189, 190, 195, 196, 198, 199, 202, 207, 210, 213, 214, 215, 217, 218, 220, 222, 223, 225, 226, 228, 229, 230, 231, 234, 235, 237, 238, 242, 243, 244, 245, 246, 247, 250, 252, 253, 255, 258
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    N:= 1000: # for terms <= N
    B:= Vector(N):
    for i from 1 while 4*i^2 <= N do
      for j from i while i^2 + 3*j^2 <= N do
        for k from j while i^2 + j^2 + 2*k^2 <= N do
          for l from k do
            m:= i^2 + j^2 + k^2 + l^2;
            if m > N then break fi;
            B[m]:= B[m]+1
    od od od od:
    select(t -> B[t] >= 7, [$1..N]); # Robert Israel, Oct 23 2020

Formula

{n: A025428(n) >= 7}. - R. J. Mathar, Jun 15 2018

A025370 Numbers that are the sum of 4 nonzero squares in 5 or more ways.

Original entry on oeis.org

82, 90, 100, 102, 103, 106, 108, 111, 114, 115, 117, 118, 122, 124, 126, 127, 130, 132, 133, 135, 138, 143, 145, 147, 148, 150, 151, 153, 154, 156, 157, 159, 162, 163, 165, 166, 167, 169, 170, 171, 172, 174, 175, 177, 178, 180, 181, 182, 183, 186, 187, 188, 189, 190
Offset: 1

Views

Author

Keywords

Crossrefs

Formula

{n: A025428(n) >= 5}. Union of A025371 and A025361. - R. J. Mathar, Jun 15 2018

A344799 Numbers that are the sum of five squares in six or more ways.

Original entry on oeis.org

77, 80, 83, 85, 86, 88, 91, 92, 94, 98, 99, 100, 101, 103, 104, 106, 107, 109, 110, 112, 113, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 130, 131, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149
Offset: 1

Views

Author

Sean A. Irvine, May 28 2021

Keywords

Crossrefs

A025362 Numbers that are the sum of 4 nonzero squares in exactly 6 ways.

Original entry on oeis.org

90, 124, 133, 147, 156, 157, 159, 163, 165, 166, 171, 174, 177, 188, 193, 201, 203, 205, 219, 239, 241, 249, 254, 260, 284, 293, 299, 329, 341, 360, 496, 624, 664, 696, 752, 1016, 1040, 1136, 1440, 1984, 2496, 2656, 2784, 3008, 4064, 4160, 4544, 5760, 7936
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A025428, A025371 (at least 6 ways).

Programs

  • Python
    limit = 8000
    from functools import lru_cache
    sq = [k**2 for k in range(1, int(limit**.5)+2) if k**2 + 3 <= limit]
    sqs = set(sq)
    @lru_cache(maxsize=None)
    def findsums(n, m):
      if m == 1: return {(n, )} if n in sqs else set()
      return set(tuple(sorted(t+(s,))) for s in sqs for t in findsums(n-s, m-1))
    print([n for n in range(4, limit+1) if len(findsums(n, 4)) == 6]) # Michael S. Branicky, Apr 20 2021

A025390 Numbers that are the sum of 4 distinct nonzero squares in 6 or more ways.

Original entry on oeis.org

174, 190, 198, 210, 222, 231, 234, 238, 246, 254, 255, 258, 266, 270, 273, 279, 282, 285, 286, 290, 291, 294, 302, 303, 306, 309, 310, 315, 318, 326, 327, 330, 333, 334, 335, 338, 339, 342, 345, 350, 351, 354, 357, 358, 359, 362, 363, 365, 366, 369, 370, 371, 374, 375
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A025371.

Formula

{n: A025443(n) >= 6}. - R. J. Mathar, Jun 15 2018
Showing 1-7 of 7 results.