cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A374228 a(n) is the smallest number which can be represented as the sum of four distinct positive n-th powers in exactly n ways, or -1 if no such number exists.

Original entry on oeis.org

10, 90, 1521, 300834
Offset: 1

Views

Author

Ilya Gutkovskiy, Jul 01 2024

Keywords

Examples

			a(3) = 1521 = 1^3 + 2^3 + 8^3 + 10^3 = 1^3 + 4^3 + 5^3 + 11^3 = 4^3 + 6^3 + 8^3 + 9^3.
		

Crossrefs

A374696 a(n) is the smallest number which can be represented as the sum of 4 distinct nonzero fourth powers in exactly n ways, or -1 if no such number exists.

Original entry on oeis.org

354, 6834, 16578, 300834, 2147874, 3847554, 16408434, 13155858, 489597858, 677125218, 780595299, 2374692243, 803898018, 5645172978
Offset: 1

Views

Author

Ilya Gutkovskiy, Jul 17 2024

Keywords

Examples

			a(2) = 6834 = 1^4 + 2^4 + 4^4 + 9^4 = 3^4 + 4^4 + 7^4 + 8^4.
a(3) = 16578 = 1^4 + 2^4 + 9^4 + 10^4 = 2^4 + 5^4 + 6^4 + 11^4 = 3^4 + 7^4 + 8^4 + 10^4.
		

Crossrefs

Extensions

a(9)-a(14) from Michael S. Branicky, Jul 21 2024

A025412 Numbers that are the sum of 4 distinct positive cubes in 2 or more ways.

Original entry on oeis.org

1036, 1134, 1352, 1367, 1430, 1465, 1484, 1521, 1547, 1582, 1638, 1709, 1736, 1764, 1800, 1801, 1820, 1862, 1863, 1881, 1918, 1953, 1972, 2009, 2070, 2080, 2099, 2136, 2197, 2249, 2268, 2288, 2305, 2331, 2340, 2366, 2422, 2457, 2464, 2483, 2485, 2520
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    M:= 4000: # for terms <= M
    V:= Vector(M):
    for a from 1 while 4*a^3 < M do
      for b from a+1 while a^3 + 3*b^3 < M do
        for c from b+1 while a^3 + b^3 + 2*c^3 < M do
          for d from c+1 do
            v:= a^3 + b^3 + c^3 + d^3;
            if v > M then break fi;
            V[v]:= V[v]+1
    od od od od:
    select(t -> V[t] > 1, [$1..M]); # Robert Israel, Oct 23 2023

A350270 a(n) is the smallest number which can be represented as the sum of n distinct positive cubes in exactly n ways, or 0 if no such number exists.

Original entry on oeis.org

1, 1729, 5104, 4445, 4509, 4662, 5454, 6210, 9045, 11124, 14967, 17964, 22051, 26209, 32697, 39564, 46908, 56070, 66222, 78912, 92961, 105841, 123732, 143200, 162801, 188154, 212220, 241614, 271405, 307448, 344016, 383607, 428624, 475273, 529830, 586664, 645120
Offset: 1

Views

Author

Ilya Gutkovskiy, Dec 22 2021

Keywords

Examples

			For n = 2: 1729 = 1^3 + 12^3 = 9^3 + 10^3.
For n = 3: 5104 = 1^3 + 12^3 + 15^3 = 2^3 + 10^3 + 16^3 = 9^3 + 10^3 + 15^3.
		

Crossrefs

Extensions

a(16)-a(27) from Michael S. Branicky, Dec 22 2021
More terms from Jinyuan Wang, Dec 30 2021

A374803 a(n) is the smallest number which can be represented as the sum of 4 distinct positive fifth powers in exactly n ways, or -1 if no such number exists.

Original entry on oeis.org

1300, 4062500, 1479604544
Offset: 1

Views

Author

Ilya Gutkovskiy, Jul 20 2024

Keywords

Examples

			a(2) = 4062500 = 1^5 + 14^5 + 16^5 + 19^5 = 5^5 + 10^5 + 15^5 + 20^5.
a(3) = 1479604544 = 3^5 + 48^5 + 52^5 + 61^5 = 13^5 + 36^5 + 51^5 + 64^5 = 18^5 + 36^5 + 44^5 + 66^5.
		

Crossrefs

A374804 a(n) is the smallest number which can be represented as the sum of 4 distinct nonzero sixth powers in exactly n ways, or -1 if no such number exists.

Original entry on oeis.org

4890, 160426515, 1885800643779
Offset: 1

Views

Author

Ilya Gutkovskiy, Jul 20 2024

Keywords

Examples

			a(2) = 160426515 = 1^6 + 3^6 + 19^6 + 22^6 = 1^6 + 10^6 + 15^6 + 23^6.
a(3) = 1885800643779 = 1^6 + 34^6 + 49^6 + 111^6 = 7^6 + 43^6 + 69^6 + 110^6 = 18^6 + 25^6 + 77^6 + 109^6.
		

Crossrefs

Showing 1-6 of 6 results.