A025430 Number of partitions of n into 6 nonzero squares.
0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 2, 1, 1, 2, 1, 1, 1, 1, 2, 3, 1, 1, 3, 1, 1, 4, 1, 3, 3, 1, 4, 2, 1, 4, 4, 3, 3, 3, 3, 3, 3, 3, 4, 6, 3, 4, 6, 2, 3, 7, 3, 6, 5, 2, 7, 5, 3, 7, 7, 5, 6, 6, 5, 5, 6, 6, 7, 9, 5, 6, 10, 4, 6, 11, 5, 10, 8, 6, 11, 7, 5, 11, 10, 8, 10, 8, 8, 8, 9, 10, 11, 13
Offset: 0
Links
Crossrefs
Column k=6 of A243148.
Programs
-
Maple
b:= proc(n, i, t) option remember; `if`(n=0, `if`(t=0, 1, 0), `if`(i<1 or t<1, 0, b(n, i-1, t)+ `if`(i^2>n, 0, b(n-i^2, i, t-1)))) end: a:= n-> b(n, isqrt(n), 6): seq(a(n), n=0..120); # Alois P. Heinz, May 30 2014
-
Mathematica
a[n_] := Count[PowersRepresentations[n, 6, 2], r_ /; FreeQ[r, 0]]; Array[a, 120, 0] (* Jean-François Alcover, Feb 19 2016 *) b[n_, i_, t_] := b[n, i, t] = If[n == 0, If[t == 0, 1, 0], If[i < 1 || t < 1, 0, b[n, i - 1, t] + If[i^2 > n, 0, b[n - i^2, i, t - 1]]]]; a[n_] := b[n, Sqrt[n] // Floor, 6]; a /@ Range[0, 120] (* Jean-François Alcover, Nov 06 2020, after Alois P. Heinz *)
Formula
a(n) = [x^n y^6] Product_{k>=1} 1/(1 - y*x^(k^2)). - Ilya Gutkovskiy, Apr 19 2019