cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A025431 Number of partitions of n into 7 nonzero squares.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 2, 1, 1, 2, 1, 1, 2, 1, 2, 3, 1, 2, 3, 1, 1, 4, 2, 3, 4, 1, 4, 3, 1, 5, 4, 3, 4, 4, 4, 3, 4, 4, 5, 7, 3, 5, 7, 3, 5, 8, 4, 7, 7, 4, 8, 6, 3, 9, 10, 6, 8, 8, 7, 7, 8, 8, 9, 11, 7, 9, 12, 6, 8, 15, 8, 12, 12, 7, 15, 10, 8, 16, 13, 11, 13, 13, 12, 11
Offset: 0

Views

Author

Keywords

Crossrefs

Column k=7 of A243148.

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n=0, `if`(t=0, 1, 0),
          `if`(i<1 or t<1, 0, b(n, i-1, t)+
          `if`(i^2>n, 0, b(n-i^2, i, t-1))))
        end:
    a:= n-> b(n, isqrt(n), 7):
    seq(a(n), n=0..120);  # Alois P. Heinz, May 30 2014
  • Mathematica
    b[n_, i_, t_] := b[n, i, t] = If[n == 0, If[t == 0, 1, 0], If[i < 1 || t < 1, 0, b[n, i - 1, t] + If[i^2 > n, 0, b[n - i^2, i, t - 1]]]];
    a[n_] := b[n, Sqrt[n] // Floor, 7];
    Table[a[n], {n, 0, 120}] (* Jean-François Alcover, Apr 30 2018, after Alois P. Heinz *)

Formula

a(n) = [x^n y^7] Product_{k>=1} 1/(1 - y*x^(k^2)). - Ilya Gutkovskiy, Apr 19 2019
a(n) = Sum_{o=1..floor(n/7)} Sum_{m=o..floor((n-o)/6)} Sum_{l=m..floor((n-m-o)/5)} Sum_{k=l..floor((n-l-m-o)/4)} Sum_{j=k..floor((n-k-l-m-o)/3)} Sum_{i=j..floor((n-j-k-l-m-o)/2)} A010052(i) * A010052(j) * A010052(k) * A010052(l) * A010052(m) * A010052(o) A010052(n-i-j-k-l-m-o). - Wesley Ivan Hurt, Apr 19 2019