A025431 Number of partitions of n into 7 nonzero squares.
0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 2, 1, 1, 2, 1, 1, 2, 1, 2, 3, 1, 2, 3, 1, 1, 4, 2, 3, 4, 1, 4, 3, 1, 5, 4, 3, 4, 4, 4, 3, 4, 4, 5, 7, 3, 5, 7, 3, 5, 8, 4, 7, 7, 4, 8, 6, 3, 9, 10, 6, 8, 8, 7, 7, 8, 8, 9, 11, 7, 9, 12, 6, 8, 15, 8, 12, 12, 7, 15, 10, 8, 16, 13, 11, 13, 13, 12, 11
Offset: 0
Links
Crossrefs
Column k=7 of A243148.
Programs
-
Maple
b:= proc(n, i, t) option remember; `if`(n=0, `if`(t=0, 1, 0), `if`(i<1 or t<1, 0, b(n, i-1, t)+ `if`(i^2>n, 0, b(n-i^2, i, t-1)))) end: a:= n-> b(n, isqrt(n), 7): seq(a(n), n=0..120); # Alois P. Heinz, May 30 2014
-
Mathematica
b[n_, i_, t_] := b[n, i, t] = If[n == 0, If[t == 0, 1, 0], If[i < 1 || t < 1, 0, b[n, i - 1, t] + If[i^2 > n, 0, b[n - i^2, i, t - 1]]]]; a[n_] := b[n, Sqrt[n] // Floor, 7]; Table[a[n], {n, 0, 120}] (* Jean-François Alcover, Apr 30 2018, after Alois P. Heinz *)
Formula
a(n) = [x^n y^7] Product_{k>=1} 1/(1 - y*x^(k^2)). - Ilya Gutkovskiy, Apr 19 2019
a(n) = Sum_{o=1..floor(n/7)} Sum_{m=o..floor((n-o)/6)} Sum_{l=m..floor((n-m-o)/5)} Sum_{k=l..floor((n-l-m-o)/4)} Sum_{j=k..floor((n-k-l-m-o)/3)} Sum_{i=j..floor((n-j-k-l-m-o)/2)} A010052(i) * A010052(j) * A010052(k) * A010052(l) * A010052(m) * A010052(o) A010052(n-i-j-k-l-m-o). - Wesley Ivan Hurt, Apr 19 2019