A025432 Number of partitions of n into 8 nonzero squares.
0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 2, 1, 1, 2, 1, 1, 2, 1, 2, 4, 1, 2, 3, 1, 2, 4, 2, 3, 4, 2, 4, 4, 1, 5, 5, 3, 5, 4, 4, 4, 5, 5, 5, 8, 4, 6, 8, 3, 6, 9, 5, 9, 8, 5, 9, 8, 5, 10, 11, 7, 10, 11, 8, 9, 10, 10, 12, 13, 9, 11, 14, 8, 11, 18, 10, 15, 16, 10, 17, 14, 10, 20, 17
Offset: 0
Keywords
Links
Crossrefs
Column k=8 of A243148.
Programs
-
Maple
b:= proc(n, i, t) option remember; `if`(n=0, `if`(t=0, 1, 0), `if`(i<1 or t<1, 0, b(n, i-1, t)+ `if`(i^2>n, 0, b(n-i^2, i, t-1)))) end: a:= n-> b(n, isqrt(n), 8): seq(a(n), n=0..120); # Alois P. Heinz, May 30 2014
-
Mathematica
b[n_, i_, t_] := b[n, i, t] = If[n == 0, If[t == 0, 1, 0], If[i < 1 || t < 1, 0, b[n, i - 1, t] + If[i^2 > n, 0, b[n - i^2, i, t - 1]]]]; a[n_] := b[n, Sqrt[n] // Floor, 8]; Table[a[n], {n, 0, 120}] (* Jean-François Alcover, May 20 2018, after Alois P. Heinz *) Table[Count[IntegerPartitions[n,{8}],?(AllTrue[Sqrt[#],IntegerQ]&)],{n,0,100}] (* _Harvey P. Dale, Jul 20 2024 *)
Formula
a(n) = [x^n y^8] Product_{k>=1} 1/(1 - y*x^(k^2)). - Ilya Gutkovskiy, Apr 19 2019
a(n) = Sum_{p=1..floor(n/8)} Sum_{o=p..floor((n-p)/7)} Sum_{m=o..floor((n-o-p)/6)} Sum_{l=m..floor((n-m-o-p)/5)} Sum_{k=l..floor((n-l-m-o-p)/4)} Sum_{j=k..floor((n-k-l-m-o-p)/3)} Sum_{i=j..floor((n-j-k-l-m-o-p)/2)} A010052(i) * A010052(j) * A010052(k) * A010052(l) * A010052(m) * A010052(o) * A010052(p) * A010052(n-i-j-k-l-m-o-p). - Wesley Ivan Hurt, Apr 19 2019