A025433 Number of partitions of n into 9 nonzero squares.
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 2, 1, 1, 2, 1, 1, 2, 1, 2, 4, 1, 2, 4, 1, 2, 4, 2, 4, 4, 2, 4, 4, 2, 5, 6, 3, 5, 5, 4, 5, 5, 5, 6, 9, 5, 6, 9, 4, 7, 10, 5, 10, 9, 6, 11, 9, 6, 11, 13, 9, 11, 12, 9, 11, 13, 11, 14, 16, 11, 14, 16, 10, 13, 20, 13, 18, 19, 12, 20, 18, 13
Offset: 0
Keywords
Links
Crossrefs
Column k=9 of A243148.
Programs
-
Maple
b:= proc(n, i, t) option remember; `if`(n=0, `if`(t=0, 1, 0), `if`(i<1 or t<1, 0, b(n, i-1, t)+ `if`(i^2>n, 0, b(n-i^2, i, t-1)))) end: a:= n-> b(n, isqrt(n), 9): seq(a(n), n=0..120); # Alois P. Heinz, May 30 2014
-
Mathematica
a[n_] := Count[ PowersRepresentations[n, 9, 2], pr_List /; FreeQ[pr, 0]]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Dec 27 2012 *)
Formula
a(n) = [x^n y^9] Product_{k>=1} 1/(1 - y*x^(k^2)). - Ilya Gutkovskiy, Apr 19 2019
a(n) = Sum_{q=1..floor(n/9)} Sum_{p=q..floor((n-q)/8)} Sum_{o=p..floor((n-p-q)/6)} Sum_{m=o..floor((n-o-p-q)/6)} Sum_{l=m..floor((n-m-o-p-q)/5)} Sum_{k=l..floor((n-l-m-o-p-q)/4)} Sum_{j=k..floor((n-k-l-m-o-p-q)/3)} Sum_{i=j..floor((n-j-k-l-m-o-p-q)/2)} A010052(i) * A010052(j) * A010052(k) * A010052(l) * A010052(m) * A010052(o) * A010052(p) * A010052(q) * A010052(n-i-j-k-l-m-o-p-q). - Wesley Ivan Hurt, Apr 19 2019