A025434 Number of partitions of n into 10 nonzero squares.
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 2, 1, 1, 2, 1, 1, 2, 1, 2, 4, 1, 2, 4, 1, 2, 5, 2, 4, 4, 2, 5, 4, 2, 5, 6, 4, 5, 6, 4, 5, 6, 5, 7, 9, 5, 7, 10, 5, 7, 11, 6, 11, 10, 6, 12, 10, 7, 13, 14, 10, 12, 14, 11, 12, 14, 12, 16, 19, 12, 16, 19, 12, 16, 22, 15, 21, 21, 15
Offset: 0
Keywords
Links
Programs
-
Maple
b:= proc(n, i, t) option remember; `if`(n=0, `if`(t=0, 1, 0), `if`(i<1 or t<1, 0, b(n, i-1, t)+ `if`(i^2>n, 0, b(n-i^2, i, t-1)))) end: a:= n-> b(n, isqrt(n), 10): seq(a(n), n=0..120); # Alois P. Heinz, May 30 2014
-
Mathematica
b[n_, i_, t_] := b[n, i, t] = If[n == 0, If[t == 0, 1, 0], If[i < 1 || t < 1, 0, b[n, i - 1, t] + If[i^2 > n, 0, b[n - i^2, i, t - 1]]]]; a[n_] := b[n, Sqrt[n] // Floor, 10]; a /@ Range[0, 120] (* Jean-François Alcover, Nov 07 2020, after Alois P. Heinz *)
Formula
a(n) = [x^n y^10] Product_{k>=1} 1/(1 - y*x^(k^2)). - Ilya Gutkovskiy, Apr 19 2019
a(n) = Sum_{r=1..floor(n/10)} Sum_{q=r..floor((n-r)/9)} Sum_{p=q..floor((n-q-r)/8)} Sum_{o=p..floor((n-p-q-r)/7)} Sum_{m=o..floor((n-o-p-q-r)/6)} Sum_{l=m..floor((n-m-o-p-q-r)/5)} Sum_{k=l..floor((n-l-m-o-p-q-r)/4)} Sum_{j=k..floor((n-k-l-m-o-p-q-r)/3)} Sum_{i=j..floor((n-j-k-l-m-o-p-q-r)/2)} A010052(i) * A010052(j) * A010052(k) * A010052(l) * A010052(m) * A010052(o) * A010052(p) * A010052(q) *A010052(r) * A010052(n-i-j-k-l-m-o-p-q-r). - Wesley Ivan Hurt, Apr 19 2019