A025456 Number of partitions of n into 3 positive cubes.
0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0
Keywords
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 0..10000
- Index entries for sequences related to sums of cubes
Crossrefs
Programs
-
Maple
A025456 := proc(n) local a,x,y,zcu ; a := 0 ; for x from 1 do if 3*x^3 > n then return a; end if; for y from x do if x^3+2*y^3 > n then break; end if; zcu := n-x^3-y^3 ; if isA000578(zcu) then a := a+1 ; end if; end do: end do: end proc: # R. J. Mathar, Sep 15 2015
-
Mathematica
a[n_] := Count[ PowersRepresentations[n, 3, 3], pr_List /; FreeQ[pr, 0]]; Table[a[n], {n, 0, 107}] (* Jean-François Alcover, Oct 31 2012 *)
-
PARI
a(n)=sum(a=sqrtnint(n\3,3),sqrtnint(n,3),sum(b=1,a,my(C=n-a^3-b^3,c);ispower(C,3,&c)&&0
Charles R Greathouse IV, Jun 26 2013
Formula
a(n) = [x^n y^3] Product_{k>=1} 1/(1 - y*x^(k^3)). - Ilya Gutkovskiy, Apr 23 2019
Extensions
Second offset from Michel Marcus, Apr 23 2019
Comments