A025458 Number of partitions of n into 5 positive cubes.
0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0
Offset: 0
Keywords
Links
Crossrefs
Programs
-
Maple
A025458 := proc(n) local a,x,y,z,u,vcu ; a := 0 ; for x from 1 do if 5*x^3 > n then return a; end if; for y from x do if x^3+4*y^3 > n then break; end if; for z from y do if x^3+y^3+3*z^3 > n then break; end if; for u from z do if x^3+y^3+z^3+2*u^3 > n then break; end if; vcu := n-x^3-y^3-z^3-u^3 ; if isA000578(vcu) then a := a+1 ; end if; end do: end do: end do: end do: end proc: # R. J. Mathar, Sep 15 2015
-
Mathematica
a[n_] := IntegerPartitions[n, {5}, Range[n^(1/3) // Ceiling]^3] // Length; a /@ Range[0, 157] (* Jean-François Alcover, Jun 20 2020 *)
Formula
a(n) = [x^n y^5] Product_{k>=1} 1/(1 - y*x^(k^3)). - Ilya Gutkovskiy, Apr 23 2019
Extensions
Second offset from Michel Marcus, Apr 25 2019
Comments