cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A025461 Number of partitions of n into 8 positive cubes.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1
Offset: 0

Views

Author

Keywords

Crossrefs

Column k=8 of A320841.

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n=0, `if`(t=0, 1, 0),
          `if`(i<1 or t<1, 0, b(n, i-1, t)+
          `if`(i^3>n, 0, b(n-i^3, i, t-1))))
        end:
    a:= n-> b(n, iroot(n, 3), 8):
    seq(a(n), n=0..120);  # Alois P. Heinz, Dec 21 2018
  • Mathematica
    b[n_, i_, t_] := b[n, i, t] = If[n == 0, If[t == 0, 1, 0], If[i < 1 || t < 1, 0, b[n, i - 1, t] + If[i^3 > n, 0, b[n - i^3, i, t - 1]]]];
    a[n_] := b[n, n^(1/3) // Floor, 8];
    a /@ Range[0, 120] (* Jean-François Alcover, Nov 23 2020, after Alois P. Heinz *)

Formula

a(n) = [x^n y^8] Product_{k>=1} 1/(1 - y*x^(k^3)). - Ilya Gutkovskiy, Apr 23 2019

Extensions

Second offset 132 from Michel Marcus, Apr 23 2019