A025461 Number of partitions of n into 8 positive cubes.
0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1
Offset: 0
Keywords
Links
Crossrefs
Column k=8 of A320841.
Programs
-
Maple
b:= proc(n, i, t) option remember; `if`(n=0, `if`(t=0, 1, 0), `if`(i<1 or t<1, 0, b(n, i-1, t)+ `if`(i^3>n, 0, b(n-i^3, i, t-1)))) end: a:= n-> b(n, iroot(n, 3), 8): seq(a(n), n=0..120); # Alois P. Heinz, Dec 21 2018
-
Mathematica
b[n_, i_, t_] := b[n, i, t] = If[n == 0, If[t == 0, 1, 0], If[i < 1 || t < 1, 0, b[n, i - 1, t] + If[i^3 > n, 0, b[n - i^3, i, t - 1]]]]; a[n_] := b[n, n^(1/3) // Floor, 8]; a /@ Range[0, 120] (* Jean-François Alcover, Nov 23 2020, after Alois P. Heinz *)
Formula
a(n) = [x^n y^8] Product_{k>=1} 1/(1 - y*x^(k^3)). - Ilya Gutkovskiy, Apr 23 2019
Extensions
Second offset 132 from Michel Marcus, Apr 23 2019