A025473 a(1) = 1; for n > 1, a(n) = prime root of n-th prime power (A000961).
1, 2, 3, 2, 5, 7, 2, 3, 11, 13, 2, 17, 19, 23, 5, 3, 29, 31, 2, 37, 41, 43, 47, 7, 53, 59, 61, 2, 67, 71, 73, 79, 3, 83, 89, 97, 101, 103, 107, 109, 113, 11, 5, 127, 2, 131, 137, 139, 149, 151, 157, 163, 167, 13, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239
Offset: 1
References
- Paul J. McCarthy, Algebraic Extensions of Fields, Dover books, 1976, pages 40, 69
Links
- David Wasserman, Table of n, a(n) for n = 1..1000
- OEIS Wiki, LCM numeral system
- Eric Weisstein's World of Mathematics, Cyclotomic Polynomial
Programs
-
Haskell
a025473 = a020639 . a000961 -- Reinhard Zumkeller, Aug 14 2013
-
Maple
cvm := proc(n, level) local f,opf; if n < 2 then RETURN() fi; f := ifactors(n); opf := op(1,op(2,f)); if nops(op(2,f)) > 1 or op(2,opf) <= level then RETURN() fi; op(1,opf) end: A025473_list := n -> [1,seq(cvm(i,0),i=1..n)]; A025473_list(240); # Peter Luschny, Sep 21 2011
-
Mathematica
a = Join[{1}, Flatten[Table[If[PrimeQ[Apply[Plus, CoefficientList[Cyclotomic[n, x], x]]], Apply[Plus, CoefficientList[Cyclotomic[n, x], x]], {}], {n, 1, 1000}]]] (* Roger L. Bagula, Jul 08 2008 *) Join[{1}, First@ First@# & /@ FactorInteger@ Select[Range@ 240, PrimePowerQ]] (* Robert G. Wilson v, Aug 17 2017 *)
-
PARI
print1(1); for(n=2,1e3, if(isprimepower(n,&p), print1(", "p))) \\ Charles R Greathouse IV, Apr 28 2014
-
Python
from sympy import primepi, integer_nthroot, primefactors def A025473(n): if n == 1: return 1 def f(x): return int(n+x-1-sum(primepi(integer_nthroot(x,k)[0]) for k in range(1,x.bit_length()))) m, k = n, f(n) while m != k: m, k = k, f(k) return primefactors(m)[0] # Chai Wah Wu, Aug 15 2024
-
Sage
def A025473_list(n) : R = [1] for i in (2..n) : if i.is_prime_power() : R.append(prime_divisors(i)[0]) return R A025473_list(239) # Peter Luschny, Feb 07 2012
Formula
From Reinhard Zumkeller, Jun 26 2011: (Start)
Extensions
Offset corrected by David Wasserman, Dec 22 2008
Comments