A319150 a(n) = gcd(A275286(n), A001818(n+1)) / A025549(n+1)^2.
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 1, 1, 1, 1, 1, 1, 1, 1, 1, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 0
Keywords
Examples
For n = 5: B(n) = A275286(5) = 98607816; C(n) = A001818(5+1) = 108056025; gcd(98607816,108056025) = A(5) = 9; A025549(5+1)^2 = 3^2 = 9; So a(5) = A(5)/A025549(5+1)^2 = 9/9 = 1.
Programs
-
Mathematica
a[n_] := GCD[(2n+1)!!^2 * Sum[(-1)^k/(2k+1)^2, {k, 0, n}], (2n+1)!!^2]* LCM @@ Range[1, 2n+1, 2]^2 / ((2n+1)!!)^2; Array[a, 100, 0] (* Amiram Eldar, Nov 16 2018 *)
-
PARI
dfo(n) = (2*n)! / n! / 2^n; a6(n) = dfo(n+1)^2*sum(k=0, n, (-1)^k/(2*k+1)^2); a8(n) = ((2*n)!/(n!*2^n))^2; a9(n) = (((2*n)!/n!)/2^n)/lcm(vector(n, i, 2*i-1)); a(n) = gcd(a6(n) , a8(n+1)) / a9(n+1)^2; \\ Michel Marcus, Nov 08 2018
Formula
Explicit formula:
a(n) = gcd( ((2*n+1)!!)^2 * (Sum_{i=0..n}((-1)^i)/(2*i+1)^2), ((2*n+1)!!)^2 ) / ( (((2*n+1)!!)^2) / ( lcm{1,3,5,...,2*n+1} ) )^2.
A few relations:
Comments