cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A033438 Number of edges in 6-partite Turán graph of order n.

Original entry on oeis.org

0, 0, 1, 3, 6, 10, 15, 20, 26, 33, 41, 50, 60, 70, 81, 93, 106, 120, 135, 150, 166, 183, 201, 220, 240, 260, 281, 303, 326, 350, 375, 400, 426, 453, 481, 510, 540, 570, 601, 633, 666, 700, 735, 770, 806, 843, 881
Offset: 0

Views

Author

Keywords

Comments

Apart from the initial term this is the elliptic troublemaker sequence R_n(1,6) (also sequence R_n(5,6)) in the notation of Stange (see Table 1, p.16). For other elliptic troublemaker sequences R_n(a,b) see the cross references below. - Peter Bala, Aug 12 2013

References

  • Graham et al., Handbook of Combinatorics, Vol. 2, p. 1234.

Crossrefs

Differs from A025708(n)+1 at 31st position.
Elliptic troublemaker sequences: A007590 (= R_n(2,4)), A030511 (= R_n(2,6) = R_n(4,6)), A184535 (= R_n(2,5) = R_n(3,5)).

Programs

Formula

a(n) = Sum_{k=0..n} A097325(k)*(n-k). - Reinhard Zumkeller, Nov 30 2009
a(n) = +2*a(n-1) -a(n-2) +a(n-6) -2*a(n-7) +a(n-8).
G.f.: -x^2*(1+x+x^3+x^4+x^2) / ( (1+x)*(1+x+x^2)*(x^2-x+1)*(x-1)^3 ).
a(n) = floor(5*n^2/12). - Peter Bala, Aug 12 2013
a(n) = Sum_{i=1..n} floor(5*i/6). - Wesley Ivan Hurt, Sep 12 2017

A025723 Index of 7^n within sequence of numbers of form 5^i*7^j.

Original entry on oeis.org

1, 3, 6, 10, 15, 22, 30, 39, 49, 60, 73, 87, 102, 118, 135, 154, 174, 195, 217, 240, 265, 291, 318, 346, 376, 407, 439, 472, 506, 542, 579, 617, 656, 696, 738, 781, 825, 870, 916, 964, 1013, 1063, 1114, 1166, 1220, 1275, 1331, 1388, 1447, 1507, 1568, 1630, 1693
Offset: 0

Views

Author

Keywords

Comments

Positions of zeros in A025652. - R. J. Mathar, Jul 06 2025

Crossrefs

Cf. A025708, A022330, A022331, etc.

Programs

  • Maple
    ListTools:-PartialSums([1,seq(ceil(k*log[5](7)),k=1..100)]); # Robert Israel, Nov 16 2016
  • Mathematica
    Table[1 + Sum[Ceiling[k Log[5, 7]], {k, n}], {n, 0, 52}] (* Michael De Vlieger, Nov 16 2016 *)
  • PARI
    a(n)=my(N=1); n+1+sum(i=1, n, logint(N*=7, 5)); \\ Charles R Greathouse IV, Jan 11 2018
    
  • PARI
    first(n)=my(s, N=1/7); vector(n+1, i, s+=logint(N*=7, 5)+1) \\ Charles R Greathouse IV, Jan 11 2018

Formula

a(n) = 1 + Sum_{k=1..n} ceiling(k*log_5(7)). - Robert Israel, Nov 16 2016

Extensions

Offset changed to 0 by Robert Israel, Nov 16 2016
Showing 1-2 of 2 results.