cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A025799 Expansion of 1/((1-x^2)*(1-x^3)*(1-x^10)).

Original entry on oeis.org

1, 0, 1, 1, 1, 1, 2, 1, 2, 2, 3, 2, 4, 3, 4, 4, 5, 4, 6, 5, 7, 6, 8, 7, 9, 8, 10, 9, 11, 10, 13, 11, 14, 13, 15, 14, 17, 15, 18, 17, 20, 18, 22, 20, 23, 22, 25, 23, 27, 25, 29, 27, 31, 29, 33, 31, 35, 33, 37, 35, 40, 37, 42, 40, 44, 42, 47, 44, 49, 47, 52, 49, 55, 52, 57, 55, 60, 57
Offset: 0

Views

Author

Keywords

Comments

Number of partitions of n into parts 2, 3, and 10. - Hoang Xuan Thanh, Aug 21 2025

Examples

			G.f. = 1 + x^2 + x^3 + x^4 + x^5 + 2*x^6 + x^7 + 2*x^8 + 2*x^9 + 3*x^10 + 2*x^11 + ...
		

Crossrefs

Programs

  • Mathematica
    A025799[n_] := Floor[(n^2 + 15*n + 3*(-1)^n*(n + 7) + 99)/120];
    Array[A025799, 100, 0] (* Paolo Xausa, Aug 25 2025 *)
  • PARI
    {a(n) = if( n<-14, a(-15 - n), polcoeff( 1 / ((1 - x^2) * (1 - x^3) * (1 - x^10)) + x * O(x^n), n))}; /* Michael Somos, Mar 2003 */
    
  • PARI
    {a(n) = n = (n - 3*(n%2)) / 2; (n^2 + 9*n)\30 + 1}; /* Michael Somos, Nov 16 2005 */

Formula

G.f.: 1/((1-x^2)(1-x^3)(1-x^10)).
a(n) = A008672( A028242(n - 2)). a(2*n + 3) = a(2*n) = A008672(n).- Michael Somos, Mar 2003
a(n) = a(-15 - n) for all n in Z. - Michael Somos, Nov 16 2005
a(n) = floor((n^2 + 15*n + 3*(n+7)*(-1)^n + 99)/120). - Hoang Xuan Thanh, Aug 21 2025