A025799 Expansion of 1/((1-x^2)*(1-x^3)*(1-x^10)).
1, 0, 1, 1, 1, 1, 2, 1, 2, 2, 3, 2, 4, 3, 4, 4, 5, 4, 6, 5, 7, 6, 8, 7, 9, 8, 10, 9, 11, 10, 13, 11, 14, 13, 15, 14, 17, 15, 18, 17, 20, 18, 22, 20, 23, 22, 25, 23, 27, 25, 29, 27, 31, 29, 33, 31, 35, 33, 37, 35, 40, 37, 42, 40, 44, 42, 47, 44, 49, 47, 52, 49, 55, 52, 57, 55, 60, 57
Offset: 0
Examples
G.f. = 1 + x^2 + x^3 + x^4 + x^5 + 2*x^6 + x^7 + 2*x^8 + 2*x^9 + 3*x^10 + 2*x^11 + ...
Links
- Paolo Xausa, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (0,1,1,0,-1,0,0,0,0,1,0,-1,-1,0,1).
Programs
-
Mathematica
A025799[n_] := Floor[(n^2 + 15*n + 3*(-1)^n*(n + 7) + 99)/120]; Array[A025799, 100, 0] (* Paolo Xausa, Aug 25 2025 *)
-
PARI
{a(n) = if( n<-14, a(-15 - n), polcoeff( 1 / ((1 - x^2) * (1 - x^3) * (1 - x^10)) + x * O(x^n), n))}; /* Michael Somos, Mar 2003 */
-
PARI
{a(n) = n = (n - 3*(n%2)) / 2; (n^2 + 9*n)\30 + 1}; /* Michael Somos, Nov 16 2005 */
Formula
G.f.: 1/((1-x^2)(1-x^3)(1-x^10)).
a(n) = a(-15 - n) for all n in Z. - Michael Somos, Nov 16 2005
a(n) = floor((n^2 + 15*n + 3*(n+7)*(-1)^n + 99)/120). - Hoang Xuan Thanh, Aug 21 2025
Comments