cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A025810 Expansion of 1/((1-x^2)*(1-x^5)*(1-x^10)).

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 3, 1, 3, 1, 3, 3, 3, 3, 3, 3, 6, 3, 6, 3, 6, 6, 6, 6, 6, 6, 10, 6, 10, 6, 10, 10, 10, 10, 10, 10, 15, 10, 15, 10, 15, 15, 15, 15, 15, 15, 21, 15, 21, 15, 21, 21, 21, 21, 21, 21, 28, 21, 28, 21, 28, 28, 28, 28, 28, 28, 36, 28, 36, 28, 36, 36, 36, 36, 36, 36
Offset: 0

Views

Author

Keywords

Comments

Number of partitions of n into parts of size 2, 5, and 10.
a(n) is always a triangular number.

Examples

			G.f. = 1 + x^2 + x^4 + x^5 + x^6 + x^7 + x^8 + x^9 + 3*x^10 + x^11 + 3*x^12 + ...
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[1/((1-x^2)(1-x^5)(1-x^10)), {x,0,85}], x]  (* Harvey P. Dale, Apr 06 2011 *)
    a[ n_] := Module[ {m = Mod[n, 10], k}, k = n - m; If[ m == 1 || m == 3, k -= 10]; k (k + 30) / 200 + 1]; (* Michael Somos, Aug 16 2016 *)
  • PARI
    {a(n) = if( n<-16, a(-17 - n), polcoeff( 1 / ((1 - x^2) * (1 - x^5) * (1 - x^10)) + x * O(x^n), n))}; \\ Michael Somos, Mar 18 2012
    
  • PARI
    {a(n) = my(m = n%10); n -= m; if( m==1 || m==3, n -= 10); n * (n + 30) / 200 + 1}; \\ Michael Somos, Aug 16 2016
    
  • PARI
    a(n) = (n^2 + 17*n + (5*n+22)*(-1)^n + 200 + 4*n*[2,-1,1,-2,0][n%5+1])\200 \\ Hoang Xuan Thanh, Aug 28 2025

Formula

G.f.: 1/((1-x^2)(1-x^5)(1-x^10)).
Euler transform of length 10 sequence [ 0, 1, 0, 0, 1, 0, 0, 0, 0, 1]. - Michael Somos, Mar 18 2012
a(n) = a(-17 - n) = a(n - 10) + A008616(n) for all n in Z. - Michael Somos, Mar 18 2012
a(n) = A000217( A008616(n) ) = A000008(n) - A000008(n - 1). - Michael Somos, Dec 15 2002