cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A026035 Expansion of x^2*(2 - x + x^2) / ((1 + x)*(1 - x)^4).

Original entry on oeis.org

2, 5, 12, 22, 38, 59, 88, 124, 170, 225, 292, 370, 462, 567, 688, 824, 978, 1149, 1340, 1550, 1782, 2035, 2312, 2612, 2938, 3289, 3668, 4074, 4510, 4975, 5472, 6000, 6562, 7157, 7788, 8454, 9158, 9899, 10680, 11500, 12362, 13265, 14212, 15202, 16238
Offset: 2

Views

Author

Keywords

Comments

Equals (d(n)-r(n))/2, where d = A006527 and r is the periodic sequence with fundamental period (0,1,0,1).
Consider any of the permutations of (1,2,3,...,n) as p(1),p(2),p(3),...,p(n). Then take the sum S of products formed from the permutation as S = p(1)*p(2) + p(2)*p(3) + p(3)*p(4) +... + p(n-1)*p(n). This sequence represents the minimum possible S. - Leroy Quet and Rainer Rosenthal, Jan 30 2005
From Dmitry Kamenetsky, Dec 15 2006: (Start)
This sequence is related to A101986, except here we take the minimum sum of products of successive pairs. Here is a method for generating such permutations. Start with two lists, the first has numbers 1 to n, while the second is empty.
Repeat the following operations until the first list is empty:
1. Move the largest number of the first list to the leftmost available position in the second list. The move operation removes the original number from the first list.
2. Move the largest number of the first list to the rightmost available position in the second list.
3. Move the smallest number of the first list to the leftmost available position in the second list.
4. Move the smallest number of the first list to the rightmost available position in the second list. For example when n=8, the permutation is 8, 1, 6, 3, 4, 5, 2, 7.
(End)

Crossrefs

Cf. A101986.

Programs

  • Magma
    [Binomial(n,3)+Floor(n^2/2): n in [2..50]]; // Bruno Berselli, Jun 08 2017
  • Mathematica
    CoefficientList[Series[(2 - x + x^2)/((1 + x) (1 - x)^4), {x, 0, 45}], x] (* Robert G. Wilson v, Jan 29 2005 *)
    LinearRecurrence[{3, -2, -2, 3, -1}, {2, 5, 12, 22, 38}, 50] (* Harvey P. Dale, May 31 2013 *)
    Table[(2 n^3 + 4 n - 3 + 3 (-1)^n)/12, {n, 2, 50}] (* Bruno Berselli, Jun 08 2017 *)

Formula

a(n) = (2*n^3 + 4*n - 3 + 3*(-1)^n)/12. - Ralf Stephan, Jan 30 2005.
For n>6, a(n) = 3*a(n-1) - 2*a(n-2) - 2*a(n-3) + 3*a(n-4) - a(n-5), and a(2)=2, a(3)=5, a(4)=12, a(5)=22, a(6)=38. - Harvey P. Dale, May 31 2013
a(n) = binomial(n,3) + floor(n^2/2). - Bruno Berselli, Jun 08 2017

Extensions

Corrected by Ralf Stephan, Jan 09 2005