A026035 Expansion of x^2*(2 - x + x^2) / ((1 + x)*(1 - x)^4).
2, 5, 12, 22, 38, 59, 88, 124, 170, 225, 292, 370, 462, 567, 688, 824, 978, 1149, 1340, 1550, 1782, 2035, 2312, 2612, 2938, 3289, 3668, 4074, 4510, 4975, 5472, 6000, 6562, 7157, 7788, 8454, 9158, 9899, 10680, 11500, 12362, 13265, 14212, 15202, 16238
Offset: 2
Links
- M. Benoumhani and M. Kolli, Finite topologies and partitions, JIS 13 (2010) # 10.3.5, t_{N0}(n,5) in theorem 5.
- Index entries for linear recurrences with constant coefficients, signature (3,-2,-2,3,-1).
Crossrefs
Cf. A101986.
Programs
-
Magma
[Binomial(n,3)+Floor(n^2/2): n in [2..50]]; // Bruno Berselli, Jun 08 2017
-
Mathematica
CoefficientList[Series[(2 - x + x^2)/((1 + x) (1 - x)^4), {x, 0, 45}], x] (* Robert G. Wilson v, Jan 29 2005 *) LinearRecurrence[{3, -2, -2, 3, -1}, {2, 5, 12, 22, 38}, 50] (* Harvey P. Dale, May 31 2013 *) Table[(2 n^3 + 4 n - 3 + 3 (-1)^n)/12, {n, 2, 50}] (* Bruno Berselli, Jun 08 2017 *)
Formula
a(n) = (2*n^3 + 4*n - 3 + 3*(-1)^n)/12. - Ralf Stephan, Jan 30 2005.
For n>6, a(n) = 3*a(n-1) - 2*a(n-2) - 2*a(n-3) + 3*a(n-4) - a(n-5), and a(2)=2, a(3)=5, a(4)=12, a(5)=22, a(6)=38. - Harvey P. Dale, May 31 2013
a(n) = binomial(n,3) + floor(n^2/2). - Bruno Berselli, Jun 08 2017
Extensions
Corrected by Ralf Stephan, Jan 09 2005
Comments