A026040 a(n) = dot_product(1,2,...,n)*(4,5,...,n,1,2,3).
24, 40, 64, 98, 144, 204, 280, 374, 488, 624, 784, 970, 1184, 1428, 1704, 2014, 2360, 2744, 3168, 3634, 4144, 4700, 5304, 5958, 6664, 7424, 8240, 9114, 10048, 11044, 12104, 13230, 14424, 15688, 17024, 18434, 19920, 21484, 23128, 24854, 26664
Offset: 4
Links
- Vincenzo Librandi, Table of n, a(n) for n = 4..1000
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Crossrefs
Column 3 of triangle A094414.
Programs
-
Magma
[n*(n^2-3*n+14)/3: n in [4..50]]; // Vincenzo Librandi, Oct 17 2013
-
Maple
a:=n->n*(n^2-3*n+14)/3: seq(a(n),n=4..50); # Emeric Deutsch, Nov 27 2006
-
Mathematica
Table[Range[n].RotateLeft[Range[n],3], {n,4,52}] (* T. D. Noe, Nov 07 2006 *) CoefficientList[Series[(24 - 56 x + 48 x^2 - 14 x^3)/(1 - x)^4, {x, 0, 50}], x] (* Vincenzo Librandi, Oct 17 2013 *) LinearRecurrence[{4,-6,4,-1},{24,40,64,98},60] (* Harvey P. Dale, Nov 04 2024 *)
Formula
a(n) = n(n^2 - 3n + 14)/3 (n >= 4). - Emeric Deutsch, Nov 27 2006
G.f.: x^4*(24 - 56*x + 48*x^2 - 14*x^3)/(1 - x)^4. - Colin Barker, Sep 17 2012
Extensions
Corrected by T. D. Noe, Nov 07 2006