A026048 (d(n)-r(n))/5, where d = A026046 and r is the periodic sequence with fundamental period (1,0,4,0,0).
15, 21, 28, 39, 52, 68, 88, 111, 140, 173, 211, 255, 304, 361, 424, 494, 572, 657, 752, 855, 967, 1089, 1220, 1363, 1516, 1680, 1856, 2043, 2244, 2457, 2683, 2923, 3176, 3445, 3728, 4026, 4340, 4669, 5016, 5379, 5759, 6157, 6572, 7007, 7460, 7932, 8424, 8935, 9468, 10021, 10595, 11191
Offset: 6
Keywords
Links
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1,0,1,-3,3,-1)
Crossrefs
A152889 [From Richard Choulet, Dec 14 2008]
Programs
-
Mathematica
LinearRecurrence[{3,-3,1,0,1,-3,3,-1},{15,21,28,39,52,68,88,111},60] (* Harvey P. Dale, Apr 01 2018 *)
Formula
a(n)=(n + 6)*(n^2 + 6*n + 38)/15 - 1/5*( 1 - 2/5*5^(1/2)*cos(2*n*Pi/5) + 2/5*2^(1/2)*(5 - 5^(1/2))^(1/2)*sin(2*n*Pi/5) + 2/5*5^(1/2)*cos(4*n*Pi/5) - 2/5*2^(1/2)*(5 + 5^(1/2))^(1/2)*sin(4*n*Pi/5)) [From Richard Choulet, Dec 14 2008]
G.f. x^6*( 15-24*x+10*x^2+3*x^3-2*x^4-14*x^5+25*x^6-11*x^7 ) / ( (x^4+x^3+x^2+x+1)*(x-1)^4 ). - R. J. Mathar, Jun 22 2013
Comments