A026065 a(n) = (d(n)-r(n))/5, where d = A026063 and r is the periodic sequence with fundamental period (1,4,0,0,0).
14, 23, 36, 51, 69, 90, 114, 143, 175, 211, 251, 295, 345, 399, 458, 522, 591, 667, 748, 835, 928, 1027, 1134, 1247, 1367, 1494, 1628, 1771, 1921, 2079, 2245, 2419, 2603, 2795, 2996, 3206, 3425, 3655, 3894, 4143, 4402, 4671, 4952, 5243, 5545, 5858, 6182, 6519, 6867, 7227, 7599, 7983, 8381
Offset: 6
Links
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1,0,1,-3,3,-1).
Crossrefs
Cf. A152898.
Programs
-
Mathematica
CoefficientList[Series[(14-19*x+9*x^2-2*x^3+x^4-14*x^5+19*x^6-7*x^7) / ( (x^4+x^3+x^2+x+1)*(x-1)^4), {x, 0, 52}], x] (* Georg Fischer, May 18 2019 *) LinearRecurrence[{3,-3,1,0,1,-3,3,-1},{14,23,36,51,69,90,114,143},60] (* Harvey P. Dale, Sep 27 2020 *)
-
PARI
my(x='x+O('x^20)); Vec((14-19*x+9*x^2-2*x^3+x^4-14*x^5+19*x^6-7*x^7) / ((x^4+x^3+x^2+x+1)*(x-1)^4)) \\ Felix Fröhlich, May 18 2019
Formula
a(n) = (n + 6)*(n^2 + 30*n + 71)/30 - 1/5*(1 + 2/5*5^(1/2)*cos(2*n*Pi/5) + 2/5*2^(1/2)*(5 + 5^(1/2))^(1/2)*sin(2*n*Pi/5) - 2/5*5^(1/2)*cos(4*n*Pi/5) + 2/5*2^(1/2)*(5 - 5^(1/2))^(1/2)*sin(4*n*Pi/5)). - Richard Choulet, Dec 14 2008
G.f.: (14-19*x+9*x^2-2*x^3+x^4-14*x^5+19*x^6-7*x^7) / ( (x^4+x^3+x^2+x+1)*(x-1)^4 ). - R. J. Mathar, Jun 23 2013 [Corrected by Georg Fischer, May 18 2019]