cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A026065 a(n) = (d(n)-r(n))/5, where d = A026063 and r is the periodic sequence with fundamental period (1,4,0,0,0).

Original entry on oeis.org

14, 23, 36, 51, 69, 90, 114, 143, 175, 211, 251, 295, 345, 399, 458, 522, 591, 667, 748, 835, 928, 1027, 1134, 1247, 1367, 1494, 1628, 1771, 1921, 2079, 2245, 2419, 2603, 2795, 2996, 3206, 3425, 3655, 3894, 4143, 4402, 4671, 4952, 5243, 5545, 5858, 6182, 6519, 6867, 7227, 7599, 7983, 8381
Offset: 6

Views

Author

Keywords

Crossrefs

Cf. A152898.

Programs

  • Mathematica
    CoefficientList[Series[(14-19*x+9*x^2-2*x^3+x^4-14*x^5+19*x^6-7*x^7) / ( (x^4+x^3+x^2+x+1)*(x-1)^4), {x, 0, 52}], x] (* Georg Fischer, May 18 2019 *)
    LinearRecurrence[{3,-3,1,0,1,-3,3,-1},{14,23,36,51,69,90,114,143},60] (* Harvey P. Dale, Sep 27 2020 *)
  • PARI
    my(x='x+O('x^20)); Vec((14-19*x+9*x^2-2*x^3+x^4-14*x^5+19*x^6-7*x^7) / ((x^4+x^3+x^2+x+1)*(x-1)^4)) \\ Felix Fröhlich, May 18 2019

Formula

a(n) = (n + 6)*(n^2 + 30*n + 71)/30 - 1/5*(1 + 2/5*5^(1/2)*cos(2*n*Pi/5) + 2/5*2^(1/2)*(5 + 5^(1/2))^(1/2)*sin(2*n*Pi/5) - 2/5*5^(1/2)*cos(4*n*Pi/5) + 2/5*2^(1/2)*(5 - 5^(1/2))^(1/2)*sin(4*n*Pi/5)). - Richard Choulet, Dec 14 2008
G.f.: (14-19*x+9*x^2-2*x^3+x^4-14*x^5+19*x^6-7*x^7) / ( (x^4+x^3+x^2+x+1)*(x-1)^4 ). - R. J. Mathar, Jun 23 2013 [Corrected by Georg Fischer, May 18 2019]