A026300 Motzkin triangle, T, read by rows; T(0,0) = T(1,0) = T(1,1) = 1; for n >= 2, T(n,0) = 1, T(n,k) = T(n-1,k-2) + T(n-1,k-1) + T(n-1,k) for k = 1,2,...,n-1 and T(n,n) = T(n-1,n-2) + T(n-1,n-1).
1, 1, 1, 1, 2, 2, 1, 3, 5, 4, 1, 4, 9, 12, 9, 1, 5, 14, 25, 30, 21, 1, 6, 20, 44, 69, 76, 51, 1, 7, 27, 70, 133, 189, 196, 127, 1, 8, 35, 104, 230, 392, 518, 512, 323, 1, 9, 44, 147, 369, 726, 1140, 1422, 1353, 835, 1, 10, 54, 200, 560, 1242, 2235, 3288, 3915, 3610, 2188
Offset: 0
Examples
Triangle starts: [0] 1; [1] 1, 1; [2] 1, 2, 2; [3] 1, 3, 5, 4; [4] 1, 4, 9, 12, 9; [5] 1, 5, 14, 25, 30, 21; [6] 1, 6, 20, 44, 69, 76, 51; [7] 1, 7, 27, 70, 133, 189, 196, 127; [8] 1, 8, 35, 104, 230, 392, 518, 512, 323; [9] 1, 9, 44, 147, 369, 726, 1140, 1422, 1353, 835.
References
- Harrie Grondijs, Neverending Quest of Type C, Volume B - the endgame study-as-struggle.
- A. Nkwanta, Lattice paths and RNA secondary structures, in African Americans in Mathematics, ed. N. Dean, Amer. Math. Soc., 1997, pp. 137-147.
Links
- Reinhard Zumkeller, Rows n = 0..120 of triangle, flattened
- M. Aigner, Motzkin Numbers, Europ. J. Comb. 19 (1998), 663-675.
- Tewodros Amdeberhan, Moa Apagodu, and Doron Zeilberger, Wilf's "Snake Oil" Method Proves an Identity in The Motzkin Triangle, arXiv:1507.07660 [math.CO], 2015.
- J. L. Arregui, Tangent and Bernoulli numbers related to Motzkin and Catalan numbers by means of numerical triangles, arXiv:math/0109108 [math.NT], 2001.
- F. R. Bernhart, Catalan, Motzkin and Riordan numbers, Discr. Math., 204 (1999), 73-112.
- Henry Bottomley, Illustration of initial terms
- M. Buckley, R. Garner, S. Lack, and R. Street, Skew-monoidal categories and the Catalan simplicial set, arXiv preprint arXiv:1307.0265 [math.CT], 2013.
- L. Carlitz, Solution of certain recurrences, SIAM J. Appl. Math., 17 (1969), 251-259.
- J. L. Chandon, J. LeMaire and J. Pouget, Denombrement des quasi-ordres sur un ensemble fini, Math. Sci. Humaines, No. 62 (1978), 61-80.
- Xiang-Ke Chang, X.-B. Hu, H. Lei, and Y.-N. Yeh, Combinatorial proofs of addition formulas, The Electronic Journal of Combinatorics, 23(1) (2016), #P1.8.
- I. Dolinka, J. East, A. Evangelou, D. FitzGerald, and N. Ham, Idempotent Statistics of the Motzkin and Jones Monoids, arXiv preprint arXiv:1507.04838 [math.CO], 2015-2016.
- Samuele Giraudo, Tree series and pattern avoidance in syntax trees, arXiv:1903.00677 [math.CO], 2019.
- Veronika Irvine, Lace Tessellations: A mathematical model for bobbin lace and an exhaustive combinatorial search for patterns, PhD Dissertation, University of Victoria, 2016.
- A. Luzón, D. Merlini, M. A. Morón, and R. Sprugnoli, Complementary Riordan arrays, Discrete Applied Mathematics, 172 (2014) 75-87.
- A. Roshan, P. H. Jones and C. D. Greenman, An Exact, Time-Independent Approach to Clone Size Distributions in Normal and Mutated Cells, arXiv preprint arXiv:1311.5769 [q-bio.QM], 2013.
- M. János Uray, A family of barely expansive polynomials, Eötvös Loránd University (Budapest, Hungary, 2020).
- Mark C. Wilson, Diagonal asymptotics for products of combinatorial classes, PDF.
- Mark C. Wilson, Diagonal asymptotics for products of combinatorial classes, Combinatorics, Probability and Computing, Volume 24, Special Issue 01,January 2015, pp 354-372.
- D. Yaqubi, M. Farrokhi D.G., and H. Gahsemian Zoeram, Lattice paths inside a table. I, arXiv:1612.08697 [math.CO], 2016-2017.
Crossrefs
Programs
-
Haskell
a026300 n k = a026300_tabl !! n !! k a026300_row n = a026300_tabl !! n a026300_tabl = iterate (\row -> zipWith (+) ([0,0] ++ row) $ zipWith (+) ([0] ++ row) (row ++ [0])) [1] -- Reinhard Zumkeller, Oct 09 2013
-
Maple
A026300 := proc(n,k) add(binomial(n,2*i+n-k)*(binomial(2*i+n-k,i) -binomial(2*i+n-k,i-1)), i=0..floor(k/2)); end proc: # R. J. Mathar, Jun 30 2013
-
Mathematica
t[n_, k_] := Sum[ Binomial[n, 2i + n - k] (Binomial[2i + n - k, i] - Binomial[2i + n - k, i - 1]), {i, 0, Floor[k/2]}]; Table[ t[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Robert G. Wilson v, Jan 03 2011 *) t[, 0] = 1; t[n, 1] := n; t[n_, k_] /; k>n || k<0 = 0; t[n_, n_] := t[n, n] = t[n-1, n-2]+t[n-1, n-1]; t[n_, k_] := t[n, k] = t[n-1, k-2]+t[n-1, k-1]+t[n-1, k]; Table[t[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Apr 18 2014 *) T[n_, k_] := Binomial[n, k] Hypergeometric2F1[1/2 - k/2, -k/2, n - k + 2, 4]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Peter Luschny, Mar 21 2018 *)
-
PARI
tabl(nn) = {for (n=0, nn, for (k=0, n, print1(sum(i=0, k\2, binomial(n, 2*i+n-k)*(binomial(2*i+n-k, i)-binomial(2*i+n-k, i-1))), ", ");); print(););} \\ Michel Marcus, Jul 25 2015
Formula
T(n,k) = Sum_{i=0..floor(k/2)} binomial(n, 2i+n-k)*(binomial(2i+n-k, i) - binomial(2i+n-k, i-1)). - Herbert Kociemba, May 27 2004
Sum_{k=0..n} (-1)^k*T(n,k) = A099323(n+1). - Philippe Deléham, Mar 19 2007
Sum_{k=0..n} (T(n,k) mod 2) = A097357(n+1). - Philippe Deléham, Apr 28 2007
Sum_{k=0..n} T(n,k)*x^(n-k) = A005043(n), A001006(n), A005773(n+1), A059738(n) for x = -1, 0, 1, 2 respectively. - Philippe Deléham, Nov 28 2009
T(n,k) = binomial(n, k)*hypergeom([1/2 - k/2, -k/2], [n - k + 2], 4). - Peter Luschny, Mar 21 2018
T(n,k) = [t^(n-k)] [x^n] 2/(1 - (2*t + 1)*x + sqrt((1 + x)*(1 - 3*x))). - Peter Luschny, Oct 24 2018
The n-th row polynomial R(n,x) equals the n-th degree Taylor polynomial of the function (1 - x^2)*(1 + x + x^2)^n expanded about the point x = 0. - Peter Bala, Feb 26 2023
Extensions
Corrected and edited by Johannes W. Meijer, Oct 05 2010
Comments