cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A026302 a(n) = number of (s(0), s(1), ..., s(n)) such that s(i) is a nonnegative integer and |s(i) - s(i-1)| <= 1 for i = 1,2,...,n, s(0) = 0, s(2n) = n. Also a(n) = T(2n,n), where T is the array in A026300.

Original entry on oeis.org

1, 2, 9, 44, 230, 1242, 6853, 38376, 217242, 1239980, 7123765, 41141916, 238637282, 1389206210, 8112107475, 47495492400, 278722764954, 1638970147188, 9654874654438, 56965811111240, 336590781348276, 1991357644501170
Offset: 0

Views

Author

Keywords

Crossrefs

Bisection of A026307.

Programs

  • Maple
    b:= proc(x, y) option remember; `if`(min(x, y)<0, 0,
         `if`(max(x, y)=0, 1, b(x-1, y)+b(x, y-1)+b(x-2, y+1)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..23);  # Alois P. Heinz, Sep 28 2019
  • Mathematica
    Table[Binomial[2*n, n]*Hypergeometric2F1[1/2 - n/2, -n/2, 2 + n, 4], {n, 0, 30}] (* Vaclav Kotesovec, Sep 17 2019 *)
  • PARI
    A026300(n,k)={ if(n<0 || k < 0, return(0) ;) ; if(n<=1, 1, if(k==0, 1, sum(i=0,k/2, binomial(n,2*i+n-k)*(binomial(2*i+n-k,i)-binomial(2*i+n-k,i-1))) ;) ;) ; }
    A026302(n)={ A026300(2*n,n) ; }
    { for(n=0,21, print(n," ",A026302(n))) ; } \\ R. J. Mathar, Oct 26 2006

Formula

a(n) = binomial(2*n,n)*hypergeom([ -n/2, 1/2 - n/2],[n+2],4). - Mark van Hoeij, Jun 02 2010
a(n) = (n + 1) * A006605(n). - Mark van Hoeij, Jul 02 2010
G.f. A(x)=(x*M(x))', where M(x)=1+x*M(x)^2+x^2*M(x)^4. - Vladimir Kruchinin, May 25 2012
From Ilya Gutkovskiy, Sep 21 2017: (Start)
a(n) = [x^n] ((1 - x - sqrt(1 - 2*x - 3*x^2))/(2*x^2))^(n+1).
a(n) = [x^n] (1/(1 - x - x^2/(1 - x - x^2/(1 - x - x^2/(1 - x - x^2/(1 - x - x^2/(1 - ...)))))))^(n+1), a continued fraction. (End)
From Vaclav Kotesovec, Sep 17 2019: (Start)
Recurrence: 3*n^2*(3*n + 1)*(3*n + 2)*(13*n - 9)*a(n) = 2*(n+1)*(2*n - 1)*(455*n^3 - 315*n^2 - 44*n + 24)*a(n-1) + 36*n*(n+1)*(2*n - 3)*(2*n - 1)*(13*n + 4)*a(n-2).
a(n) ~ sqrt(277 + 89*sqrt(13)) * (70 + 26*sqrt(13))^n / (13^(1/4) * sqrt(2*Pi*n) * 3^(3*n + 5/2)). (End)

Extensions

Corrected by R. J. Mathar, Oct 26 2006