cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A026325 Number of paths in the plane x >= 0 and y >= -2, from (0,0) to (n,0), and consisting of steps U = (1,1), D = (1,-1) and H = (1,0).

Original entry on oeis.org

1, 1, 3, 7, 19, 51, 140, 386, 1071, 2983, 8338, 23376, 65715, 185199, 523134, 1480872, 4200411, 11936619, 33981063, 96897759, 276739029, 791532973, 2267119660, 6502108902, 18671460905, 53680763201, 154507444731, 445190930863, 1284064525987
Offset: 0

Views

Author

Keywords

Comments

Previous name: Number of (s(0), s(1), ..., s(n)) such that s(i) is a nonnegative integer and |s(i) - s(i-1)| <= 1 for i = 1,2,...,n, s(0) = 2, s(n) = 2. Also T(n,n), where T is the array in A026323.
Number of paths in the plane x >= 0 and y >= -2, from (0,0) to (n,0), and consisting of steps U = (1,1), D = (1,-1) and H = (1,0). For example, for n=3, we have the 7 paths: HHH, UDH, HUD, UHD, HDU, DUH, DHU. - José Luis Ramírez Ramírez, Apr 20 2015

Crossrefs

Programs

  • Maple
    gf := sqrt(4 - 8*x - 12*x^2)*(1/x^5 - 1/x^4 - 1/(4*x^6)):
    ser := series(gf,x,36): seq(coeff(ser, x, n), n=0..28);
    A026325 := proc(n) option remember; ifelse(n < 3, [1, 1, 3][n + 1],
    ((4*n+15)*A026325(n-1) + (3-n)*A026325(n-2) - 6*n*A026325(n-3))/(n+6)) end:
    seq(A026325(n), n = 0..28); # Peter Luschny, Oct 06 2022
  • Mathematica
    CoefficientList[Series[1/(1 - x - x^2 ((1 - x - (1 - 2 x - 3 x^2)^(1/2))/(2 x^2) + 1/(1 - x - x^2 / (1 - x)))), {x, 0, 40}], x] (* Vincenzo Librandi, Apr 21 2015 *)
  • PARI
    x='x+O('x^50); Vec(1/(1 - x - x^2*((1 - x - (1 - 2*x - 3*x^2)^(1/2))/(2*x^2) + 1/(1 - x - x^2/(1 - x))))) \\ G. C. Greubel, Feb 15 2017

Formula

G.f: 1/(1 - x - x^2*(M(x) + 1/(1 - x - x^2/(1 - x)))), where M(x) is g.f. of Motzkin paths A001006. - José Luis Ramírez Ramírez, Apr 20 2015
a(n) ~ 3^(n + 7/2)/(2*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Apr 21 2015
(n + 6)*a(n) + (-4*n - 15)*a(n-1) + (n - 3)*a(n-2) + 6*n*a(n-3) = 0. - R. J. Mathar, Jul 23 2017

Extensions

New name using a comment of José Luis Ramírez Ramírez by Peter Luschny, Oct 06 2022