A026383 a(n) = 5*a(n-2), starting 1,2.
1, 2, 5, 10, 25, 50, 125, 250, 625, 1250, 3125, 6250, 15625, 31250, 78125, 156250, 390625, 781250, 1953125, 3906250, 9765625, 19531250, 48828125, 97656250, 244140625, 488281250, 1220703125, 2441406250, 6103515625, 12207031250
Offset: 0
Links
- F. R. K. Chung and R. L. Graham, Edge-colored complete graphs with precisely colored subgraphs, Combinatorica, 3, (3-4,) (1983), 315-324.
- Index entries for linear recurrences with constant coefficients, signature (0,5).
Crossrefs
Cf. A026374.
Programs
-
Mathematica
Riffle @@ Transpose@ NestList[5 # &, #, 15] &@ {1, 2} (* or *) CoefficientList[Series[(1 + 2 x)/(1 - 5 x^2), {x, 0, 31}], x] (* Michael De Vlieger, Oct 23 2016 *)
-
PARI
a(n)=(1+n%2)*5^(n\2) \\ Charles R Greathouse IV, Jun 11 2015
Formula
Also number of integer strings s(0), ...s(n) such that s(0) = 0, where, for 1 <= i <= n, s(i) is even if i is even and |s(i) - s(i-1)| <= 1.
From Emeric Deutsch, Jan 25 2004: (Start)
a(2n) = 5^n, a(2n+1) = 2*5^n.
G.f. = (1+2z)/(1-5z^2). (End)
From - Paul Barry, Apr 16 2004: (Start)
Second inverse binomial transform of Fibonacci(3n+3)/2.
a(n) = 5^(n/2)*((1/2 + 1/sqrt(5)) + (1/2 - 1/sqrt(5))*(-1)^n). (End)
From Paul Barry, Jul 14 2004: (Start)
a(n) = a(n-1) + 2*a(n-2) + 5^floor((n-2)/2);
a(n) = Sum_{k=0..floor(n/2)} binomial(floor(n/2), k)*2^(n-2k). (End)
a(n+3) = a(n+2)*a(n+1)/a(n). - Reinhard Zumkeller, Mar 04 2011
E.g.f.: 2*sinh(sqrt(5)*x)/sqrt(5) + cosh(sqrt(5)*x). - Ilya Gutkovskiy, Oct 24 2016
Extensions
Better name from Ralf Stephan, Jul 17 2013
Comments