A026384 a(n) = Sum_{j=0..i, i=0..n} T(i,j), where T is the array in A026374.
1, 3, 8, 18, 43, 93, 218, 468, 1093, 2343, 5468, 11718, 27343, 58593, 136718, 292968, 683593, 1464843, 3417968, 7324218, 17089843, 36621093, 85449218, 183105468, 427246093, 915527343, 2136230468, 4577636718, 10681152343, 22888183593, 53405761718
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (1,5,-5).
Crossrefs
Cf. A026383.
Programs
-
Magma
I:=[1,3,8]; [n le 3 select I[n] else Self(n-1)+5*Self(n-2)-5*Self(n-3): n in [1..35]]; // Vincenzo Librandi, Aug 09 2017
-
Maple
a[0]:=0:a[1]:=1:for n from 2 to 100 do a[n]:=5*a[n-2]+3 od: seq(a[n], n=1..29); # Zerinvary Lajos, Mar 17 2008
-
Mathematica
CoefficientList[Series[(1 + 2 x) / ((1 - x) (1 - 5 x^2)), {x, 0, 33}], x] (* Vincenzo Librandi, Aug 09 2017 *) LinearRecurrence[{1,5,-5},{1,3,8},40] (* Harvey P. Dale, May 31 2023 *)
-
PARI
Vec((2*x + 1)/(5*x^3 - 5*x^2 - x + 1) + O(x^40)) \\ Colin Barker, Nov 25 2016
Formula
G.f.: (1+2*x) / ((1-x)*(1-5*x^2)). - Ralf Stephan, Apr 30 2004
From Colin Barker, Nov 25 2016: (Start)
a(n) = (7*5^(n/2) - 3)/4 for n even.
a(n) = 3*(5^((n+1)/2) - 1)/4 for n odd.
a(n) = a(n-1) + 5*a(n-2) - 5*a(n-3) for n>2.
(End)
Comments