cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 209 results. Next

A356935 Numbers whose prime indices all have odd bigomega (number of prime factors with multiplicity). Products of primes indexed by elements of A026424. MM-numbers of finite multisets of finite odd-length multisets of positive integers.

Original entry on oeis.org

1, 3, 5, 9, 11, 15, 17, 19, 25, 27, 31, 33, 37, 41, 45, 51, 55, 57, 59, 61, 67, 71, 75, 81, 83, 85, 93, 95, 99, 103, 107, 109, 111, 113, 121, 123, 125, 127, 131, 135, 153, 155, 157, 165, 171, 177, 179, 181, 183, 185, 187, 191, 193, 197, 201, 205, 209, 211, 213
Offset: 1

Views

Author

Gus Wiseman, Sep 12 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. We define the multiset of multisets with MM-number n to be formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. The size of this multiset of multisets is A302242(n). For example, the prime indices of 78 are {1,2,6}, so the multiset of multisets with MM-number 78 is {{},{1},{1,2}}.

Examples

			The initial terms and corresponding multiset partitions:
   1: {}
   3: {{1}}
   5: {{2}}
   9: {{1},{1}}
  11: {{3}}
  15: {{1},{2}}
  17: {{4}}
  19: {{1,1,1}}
  25: {{2},{2}}
  27: {{1},{1},{1}}
  31: {{5}}
  33: {{1},{3}}
  37: {{1,1,2}}
  41: {{6}}
  45: {{1},{1},{2}}
  51: {{1},{4}}
  55: {{2},{3}}
  57: {{1},{1,1,1}}
		

Crossrefs

A000041 counts integer partitions, strict A000009.
A000688 counts factorizations into prime powers.
A001055 counts factorizations.
A001221 counts prime divisors, sum A001414.
A001222 counts prime factors with multiplicity.
A056239 adds up prime indices, row sums of A112798.
Odd-size multisets are ctd by A000302, A027193, A058695, rkd by A026424.
Other types: A050330, A356932, A356933, A356934.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],OddQ[Times@@Length/@primeMS/@primeMS[#]]&]

A359891 Members of A026424 (numbers with an odd number of prime factors) whose prime indices have the same mean as median.

Original entry on oeis.org

2, 3, 5, 7, 8, 11, 13, 17, 19, 23, 27, 29, 30, 31, 32, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 105, 107, 109, 110, 113, 125, 127, 128, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233
Offset: 1

Views

Author

Gus Wiseman, Jan 22 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).

Examples

			The terms together with their prime indices begin:
   2: {1}
   3: {2}
   5: {3}
   7: {4}
   8: {1,1,1}
  11: {5}
  13: {6}
  17: {7}
  19: {8}
  23: {9}
  27: {2,2,2}
  29: {10}
  30: {1,2,3}
  31: {11}
  32: {1,1,1,1,1}
For example, the prime indices of 180 are {1,1,2,2,3}, with mean 9/5 and median 2, so 180 is not in the sequence.
		

Crossrefs

A subset of A026424 = numbers with odd bigomega.
The LHS (mean of prime indices) is A326567/A326568.
This is the odd-length case of A359889, complement A359890.
The complement is A359892.
These partitions are counted by A359895, any-length A240219.
The RHS (median of prime indices) is A360005/2.
A058398 counts partitions by mean, see also A008284, A327482.
A112798 lists prime indices, length A001222, sum A056239.
A316413 lists numbers whose prime indices have integer mean.
A359893 and A359901 count partitions by median, odd-length A359902.
A359908 lists numbers whose prime indices have integer median.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],OddQ[PrimeOmega[#]]&&Mean[prix[#]]==Median[prix[#]]&]

Formula

Intersection of A026424 and A359889.

A359892 Members of A026424 (numbers with an odd number of prime factors) whose prime indices do not have the same mean as median.

Original entry on oeis.org

12, 18, 20, 28, 42, 44, 45, 48, 50, 52, 63, 66, 68, 70, 72, 75, 76, 78, 80, 92, 98, 99, 102, 108, 112, 114, 116, 117, 120, 124, 130, 138, 147, 148, 153, 154, 162, 164, 165, 168, 170, 171, 172, 174, 175, 176, 180, 182, 186, 188, 190, 192, 195, 200, 207, 208
Offset: 1

Views

Author

Gus Wiseman, Jan 22 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).

Examples

			The terms together with their prime indices begin:
   12: {1,1,2}
   18: {1,2,2}
   20: {1,1,3}
   28: {1,1,4}
   42: {1,2,4}
   44: {1,1,5}
   45: {2,2,3}
   48: {1,1,1,1,2}
   50: {1,3,3}
   52: {1,1,6}
   63: {2,2,4}
   66: {1,2,5}
   68: {1,1,7}
   70: {1,3,4}
   72: {1,1,1,2,2}
For example, the prime indices of 180 are {1,1,2,2,3}, with mean 9/5 and median 2, so 180 is in the sequence.
		

Crossrefs

A subset of A026424 = numbers with odd bigomega.
The LHS (mean of prime indices) is A326567/A326568.
This is the odd-length case of A359890, complement A359889.
The complement is A359891.
These partitions are counted by A359896, complement A359895.
The RHS (median of prime indices) is A360005/2.
A058398 counts partitions by mean, see also A008284, A327482.
A112798 lists prime indices, length A001222, sum A056239.
A316413 lists numbers whose prime indices have integer mean.
A359902 counts odd-length partitions by median.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],OddQ[PrimeOmega[#]]&&Mean[prix[#]]!=Median[prix[#]]&]

Formula

Intersection of A026424 and A359890.

A244152 Self-inverse permutation of natural numbers: a(1) = 1; thereafter, if n is k-th number with an odd number of prime divisors (counted with multiplicity) [i.e., n = A026424(k)], a(n) = A028260(1+a(k)), otherwise, when n is k-th number > 1 with an even number of prime divisors [i.e., n = A028260(1+k)], a(n) = A026424(a(k)).

Original entry on oeis.org

1, 4, 10, 2, 24, 7, 6, 55, 18, 3, 16, 15, 121, 44, 12, 11, 39, 9, 36, 35, 105, 31, 250, 5, 29, 28, 93, 26, 25, 86, 22, 82, 238, 79, 20, 19, 81, 72, 17, 68, 218, 65, 517, 14, 62, 67, 60, 202, 195, 57, 59, 56, 185, 477, 8, 52, 50, 175, 51, 47, 177, 45, 495, 167, 42, 161, 46, 40, 162, 169, 150, 38, 143, 455, 459, 140, 153, 1060, 34, 134, 37, 32
Offset: 1

Views

Author

Antti Karttunen, Jul 27 2014

Keywords

Crossrefs

Similar entanglement permutations: A245603-A245604, A235491, A236854, A243347, A244319.

Formula

a(1) = 1, and for n > 1, if A066829(n) = 1, then a(n) = A028260(1 + A244152(A055038(n))), otherwise a(n) = A026424(A244152(A055037(n)-1)).
For all n > 1, A008836(a(n)) = -1 * A008836(n), where A008836 is Liouville's lambda-function.

A245603 Permutation of natural numbers: a(1) = 1; thereafter, if n is k-th number with an odd number of prime divisors (counted with multiplicity) [i.e., n = A026424(k)], a(n) = 2*a(k), otherwise, when n is k-th number > 1 with an even number of prime divisors [i.e., n = A028260(1+k)], a(n) = 1+(2*a(k)).

Original entry on oeis.org

1, 2, 4, 3, 8, 5, 6, 16, 9, 7, 10, 12, 32, 17, 11, 13, 18, 14, 20, 24, 33, 19, 64, 15, 21, 25, 34, 22, 26, 36, 28, 40, 65, 35, 23, 27, 48, 37, 29, 41, 66, 38, 128, 30, 42, 49, 50, 68, 67, 44, 39, 52, 72, 129, 31, 43, 51, 69, 56, 45, 80, 53, 130, 73, 57, 70, 46, 54, 81, 96, 74, 58, 82, 131, 132, 76, 71, 256, 60
Offset: 1

Views

Author

Antti Karttunen, Jul 27 2014

Keywords

Crossrefs

Inverse: A245604.
Similar permutations: A143692, A244152, A244321, A245613, A245605, A245607.

Formula

a(1) = 1, and for n > 1, if A066829(n) = 1, then a(n) = 2 * A245603(A055038(n)), otherwise a(n) = 1 + (2 * A245603(A055037(n)-1)).
As a composition of related permutations:
a(n) = A244321(A245613(n)).
For all n >= 1, A000035(a(n)) = 1 - A066829(n). [Permutation A143692 has the same property.]

A245604 Permutation of natural numbers: a(1)=1, a(2n) = A026424(a(n)), a(2n+1) = A028260(1+a(n)).

Original entry on oeis.org

1, 2, 4, 3, 6, 7, 10, 5, 9, 11, 15, 12, 16, 18, 24, 8, 14, 17, 22, 19, 25, 28, 35, 20, 26, 29, 36, 31, 39, 44, 55, 13, 21, 27, 34, 30, 38, 42, 51, 32, 40, 45, 56, 50, 60, 67, 81, 37, 46, 47, 57, 52, 62, 68, 82, 59, 65, 72, 86, 79, 93, 105, 121, 23, 33, 41, 49, 48, 58, 66, 77, 53, 64, 71, 85, 76, 90, 99, 111, 61
Offset: 1

Views

Author

Antti Karttunen, Jul 27 2014

Keywords

Crossrefs

Inverse: A245603.
Similar permutations: A143691, A244152, A244322, A245614, A245606, A245608.

Formula

a(1)=1, a(2n) = A026424(a(n)), a(2n+1) = A028260(1+a(n)).
As a composition of related permutations:
a(n) = A245614(A244322(n)).
For all n >= 1, A066829(a(n)) = 1 - A000035(n). [Permutation A143691 has the same property].
Equally, A066829(a(n)*a(n+1)) = 1 for all n.

A245613 Permutation of natural numbers: a(1) = 1; thereafter, if n is k-th number with an odd number of prime divisors (counted with multiplicity) [i.e., n = A026424(k)], a(n) = A244991(a(k)), otherwise, when n is k-th number > 1 with an even number of prime divisors [i.e., n = A028260(1+k)], a(n) = A244990(1+a(k)).

Original entry on oeis.org

1, 2, 4, 3, 8, 6, 5, 16, 9, 7, 11, 10, 32, 18, 13, 12, 17, 15, 22, 20, 35, 19, 66, 14, 24, 21, 34, 25, 23, 33, 31, 45, 63, 37, 27, 26, 41, 36, 29, 43, 69, 40, 134, 30, 47, 39, 44, 68, 71, 50, 38, 46, 67, 131, 28, 49, 42, 70, 64, 52, 92, 48, 127, 65, 61, 75, 55, 51, 89, 83, 73, 60
Offset: 1

Views

Author

Antti Karttunen, Jul 27 2014

Keywords

Comments

This shares with the permutation A122111 the property that each term of A028260 is mapped to a unique term of A244990 and each term of A026424 is mapped to a unique term of A244991.

Crossrefs

Formula

a(1) = 1, and for n > 1, if A066829(n) = 1, a(n) = A244991(a(A055038(n))), otherwise a(n) = A244990(1+a(A055037(n)-1)).
As a composition of related permutations:
a(n) = A244322(A245603(n)).
For all n >= 1, A066829(n) = A244992(a(n)).

A245614 Permutation of natural numbers: a(1)=1; thereafter, if n is k-th number whose greatest prime factor has an odd index [i.e., n = A244991(k)], a(n) = A026424(a(k)), otherwise, when n is k-th number whose greatest prime factor has an even index [i.e., n = A244990(1+k)], a(n) = A028260(1+a(k)).

Original entry on oeis.org

1, 2, 4, 3, 7, 6, 10, 5, 9, 12, 11, 16, 15, 24, 18, 8, 17, 14, 22, 20, 26, 19, 29, 25, 28, 36, 35, 55, 39, 44, 31, 13, 30, 27, 21, 38, 34, 51, 46, 42, 37, 57, 40, 47, 32, 52, 45, 62, 56, 50, 68, 60, 82, 81, 67, 121, 86, 93, 105, 72, 65, 79, 33, 59, 64, 23, 53, 48, 41, 58, 49, 85, 71, 77, 66, 111, 99
Offset: 1

Views

Author

Antti Karttunen, Jul 27 2014

Keywords

Comments

This shares with the permutation A122111 the property that each term of A244990 is mapped to a unique term of A028260 and each term of A244991 is mapped to a unique term of A026424.

Crossrefs

Formula

a(1) = 1, and for n > 1, if A244992(n) = 1, a(n) = A026424(a(A244989(n))), otherwise a(n) = A028260(1+a(A244988(n)-1)).
As a composition of related permutations:
a(n) = A245604(A244321(n)).
For all n >= 1, A244992(n) = A066829(a(n)).

A143692 Permutation of natural numbers: If n is k-th number with an odd number of prime divisors (counted with multiplicity) [i.e., n = A026424(k)], a(n) = 2*k, otherwise, when n is k-th number with an even number of prime divisors [i.e., n = A028260(k)], a(n) = (2*k)-1.

Original entry on oeis.org

1, 2, 4, 3, 6, 5, 8, 10, 7, 9, 12, 14, 16, 11, 13, 15, 18, 20, 22, 24, 17, 19, 26, 21, 23, 25, 28, 30, 32, 34, 36, 38, 27, 29, 31, 33, 40, 35, 37, 39, 42, 44, 46, 48, 50, 41, 52, 54, 43, 56, 45, 58, 60, 47, 49, 51, 53, 55, 62, 57, 64, 59, 66, 61, 63, 68, 70, 72, 65, 74, 76, 78
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 29 2008

Keywords

Comments

a(a(n)) = A143694(n).

Crossrefs

Programs

  • Haskell
    import Data.List (elemIndex); import Data.Maybe (fromJust)
    a243692 = (+ 1) . fromJust . (`elemIndex` a143691_list)
    -- Reinhard Zumkeller, Aug 07 2014
  • Maple
    N:= 1000: # to get a(1) to a(N)
    Odds,Evens:= selectremove(t -> numtheory:-bigomega(t)::odd,[$1..N]):
    for k from 1 to nops(Odds) do A[Odds[k]]:= 2*k od:
    for k from 1 to nops(Evens) do A[Evens[k]]:= 2*k-1 od:
    seq(A[k],k=1..N); # Robert Israel, Jul 27 2014
  • Mathematica
    m = 100;
    odds = Select[Range[m], OddQ[PrimeOmega[#]]&];
    evens = Select[Range[m], EvenQ[PrimeOmega[#]]&];
    Do[a[odds[[k]]] = 2k, {k, 1, Length[odds]}];
    Do[a[evens[[k]]] = 2k-1, {k, 1, Length[evens]}];
    Array[a, m] (* Jean-François Alcover, Mar 09 2019, from Maple *)

Formula

From Antti Karttunen, Jul 27 2014: (Start)
If A066829(n) = 1, then a(n) = 2 * A055038(n), otherwise a(n) = (2 * A055037(n)) - 1.
For all n >= 1, A000035(a(n)) = 1 - A066829(n). [Permutation A245603 has the same property].
(End)

Extensions

Name changed by Antti Karttunen, Jul 27 2014

A378494 Intersection of A000379 and A026424.

Original entry on oeis.org

8, 12, 18, 20, 27, 28, 32, 44, 45, 48, 50, 52, 63, 68, 75, 76, 80, 92, 98, 99, 112, 116, 117, 120, 124, 125, 147, 148, 153, 162, 164, 168, 171, 172, 175, 176, 188, 207, 208, 212, 236, 242, 243, 244, 245, 261, 264, 268, 270, 272, 275, 279, 280, 284, 292, 304, 312, 316
Offset: 1

Views

Author

Paolo Xausa, Nov 28 2024, following a suggestion from Peter Munn

Keywords

Comments

First differs from A187042 at n = 24, where a(24) = 120 is missing from A187042.

Crossrefs

Programs

  • Mathematica
    A000379Q[k_] := k == 1 || EvenQ[Count[IntegerDigits[FactorInteger[k][[All, 2]], 2], 1, 2]];
    A026424Q[k_] := OddQ[PrimeOmega[k]];
    Select[Range[500], A000379Q[#] && A026424Q[#] &]
Showing 1-10 of 209 results. Next