cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A026565 a(n) = 6*a(n-2), starting with 1, 3, 9.

Original entry on oeis.org

1, 3, 9, 18, 54, 108, 324, 648, 1944, 3888, 11664, 23328, 69984, 139968, 419904, 839808, 2519424, 5038848, 15116544, 30233088, 90699264, 181398528, 544195584, 1088391168, 3265173504, 6530347008, 19591041024, 39182082048
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [1] cat [n le 2 select 3^n else 6*Self(n-2): n in [1..35]]; // G. C. Greubel, Dec 17 2021
    
  • Mathematica
    Table[(1/4)*6^(n/2)*(3*(1+(-1)^n) + Sqrt[6]*(1-(-1)^n)) - (1/2)*Boole[n==0], {n, 0, 35}] (* G. C. Greubel, Dec 17 2021 *)
  • Sage
    def A026565(n): return ( (3/2)*6^(n/2) if (n%2==0) else 3*6^((n-1)/2) ) - bool(n==0)/2
    [A026565(n) for n in (0..30)] # G. C. Greubel, Dec 17 2021

Formula

a(n) = Sum_{j=0..2*n} A026552(n, j).
G.f.: (1+3*x+3*x^2)/(1-6*x^2). - Ralf Stephan, Feb 03 2004
a(0)=1, a(1)=3; a(n) = 3*a(n-1) if n is even, a(n) = 2*a(n-1) if n is odd. - Vincenzo Librandi, Nov 19 2010
a(n) = (1/4)*6^(n/2)*(3*(1+(-1)^n) + sqrt(6)*(1-(-1)^n)) - (1/2)*[n=0]. - G. C. Greubel, Dec 17 2021

Extensions

Better name from Ralf Stephan, Jul 17 2013