cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A026567 a(n) = Sum_{i=0..2*n} Sum_{j=0..i} T(i, j), where T is given by A026552.

Original entry on oeis.org

1, 4, 13, 31, 85, 193, 517, 1165, 3109, 6997, 18661, 41989, 111973, 251941, 671845, 1511653, 4031077, 9069925, 24186469, 54419557, 145118821, 326517349, 870712933, 1959104101, 5224277605, 11754624613, 31345665637, 70527747685
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [Truncate((2*(1+(-1)^n)*6^((n+2)/2) + 27*(1-(-1)^n)*6^((n-1)/2) -14)/10): n in [0..40]]; // G. C. Greubel, Dec 19 2021
    
  • Mathematica
    CoefficientList[Series[(1 +3x +3x^2)/((1-x)(1-6x^2)), {x, 0, 40}], x] (* Vincenzo Librandi, Feb 25 2014 *)
    LinearRecurrence[{1,6,-6},{1,4,13},30] (* Harvey P. Dale, Aug 23 2014 *)
  • Sage
    [(1/10)*(2*(1+(-1)^n)*6^((n+2)/2) +27*(1-(-1)^n)*6^((n-1)/2) -14) for n in (0..40)] # G. C. Greubel, Dec 19 2021

Formula

a(n) = Sum_{i=0..2*n} Sum_{j=0..i} A026552(i, j).
G.f.: (1+3*x+3*x^2)/((1-x)*(1-6*x^2)). - Ralf Stephan, Feb 03 2004
a(n) = 6*a(n-2) + 7. - Philippe Deléham, Feb 24 2014
a(2*k) = A233325(k). - Philippe Deléham, Feb 24 2014
From Colin Barker, Nov 25 2016: (Start)
a(n) = (2^(n/2+2) * 3^(n/2+1) - 7)/5 for n even.
a(n) = (2^((n-1)/2) * 3^((n+5)/2) - 7)/5 for n odd. (End)
a(n) = (1/10)*(2*(1+(-1)^n)*6^((n+2)/2) + 27*(1-(-1)^n)*6^((n-1)/2) - 14). - G. C. Greubel, Dec 19 2021