cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A026569 a(n) = T(n,n), T given by A026568. Also a(n) = number of integer strings s(0),...,s(n) counted by T, such that s(n)=0.

Original entry on oeis.org

1, 1, 3, 5, 13, 27, 67, 153, 375, 893, 2189, 5319, 13089, 32155, 79479, 196573, 487833, 1212135, 3018355, 7525585, 18792303, 46980373, 117589689, 294613155, 738844719, 1854484305, 4658460165, 11710592711, 29458662005, 74151824271
Offset: 0

Views

Author

Keywords

Comments

Number of grand Motzkin n-paths avoiding UF. - David Scambler, Jun 20 2013

Examples

			For a(3) = 5 the five grand Motzkin paths are FDU, DFU, FUD, UDF and FFF. The paths containing UF, namely UFD and DUF, are avoided. - _David Scambler_, Jun 20 2013
		

Crossrefs

Cf. A026568.

Programs

  • GAP
    List([0..30], n-> Sum([0..Int(n/2)], k-> Binomial(2*k,k)*Binomial( n-k, k) )); # G. C. Greubel, Aug 03 2019
  • Magma
    R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( 1/Sqrt((1-x)*(1-x-4*x^2)) )); // G. C. Greubel, Aug 03 2019
    
  • Mathematica
    CoefficientList[Series[Sqrt[1/((1-x)(1-x-4x^2))],{x,0,30}],x] (* Harvey P. Dale, Oct 06 2011 *)
  • PARI
    my(x='x+O('x^30)); Vec( 1/sqrt((1-x)*(1-x-4*x^2)) ) \\ G. C. Greubel, Aug 03 2019
    
  • Sage
    (1/sqrt((1-x)*(1-x-4*x^2))).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Aug 03 2019
    

Formula

a(n) = Sum_{k=0..floor(n/2)} binomial(2*k, k)*binomial(n-k, k). - Paul Barry, Sep 09 2004
G.f.: sqrt(1/((1-x)*(1-x-4*x^2))). - Ralf Stephan, Jan 08 2004
D-finite with recurrence: a(n) = 1/n*((2*n-1)*a(n-1) + (3*n-3)*a(n-2) - (4*n-6)*a(n-3)). - Vladeta Jovovic, Mar 12 2005
a(n) = Sum_{k=0..n} C(k, n-k)*C(2*(n-k), n-k). - Paul Barry, Jul 30 2005
G.f.: 1/(1-x-2*x^2/(1-0*x-x^2/(1-x-x^2/(1-0*x-2*x^2/(1-x-x^2/.... (continued fraction). Paul Barry, Dec 07 2008
a(n) ~ sqrt((5+13/sqrt(17))/8) * ((1+sqrt(17))/2)^n/sqrt(Pi*n). - Vaclav Kotesovec, Aug 10 2013