A026616 a(n) = A026615(2*n, n).
1, 3, 10, 34, 120, 434, 1596, 5940, 22308, 84370, 320892, 1226108, 4702880, 18097044, 69832600, 270118440, 1047043260, 4066132050, 15816664380, 61615392300, 240347793840, 938669220060, 3669940053000
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Milan Janjic, Two Enumerative Functions
Crossrefs
Programs
-
Magma
[n eq 0 select 1 else ((7*n-4)*(n+1)/(4*n-2))*Catalan(n): n in [0..30]]; // G. C. Greubel, Jun 13 2024
-
Mathematica
Table[(7*n-4)*Binomial[2*n,n]/(4*n-2) - Boole[n==0], {n,0,30}] (* G. C. Greubel, Jun 13 2024 *)
-
SageMath
[(7*n-4)*binomial(2*n, n)/(4*n-2) - int(n==0) for n in range(31)] # G. C. Greubel, Jun 13 2024
Formula
From Vladeta Jovovic, Jan 08 2004: (Start)
a(n) = (1/2)*((7*n-4)/(2*n-1))*binomial(2*n, n), n >= 1.
G.f.: (2-x)/sqrt(1-4*x) - 1. (End)
E.g.f.: -1 + exp(2*x)*( (2 - x + 14*x^2)*BesselI(0, 2*x) - 13*x*BesselI(1, 2*x) - 14*x^2*BesselI(2, 2*x) ). - G. C. Greubel, Jun 13 2024
D-finite with recurrence 2*n*a(n) +3*(-3*n+2)*a(n-1) +2*(2*n-5)*a(n-2)=0. - R. J. Mathar, Nov 22 2024
D-finite with recurrence +n*(7*n-11)*a(n) -2*(7*n-4)*(2*n-3)*a(n-1)=0. - R. J. Mathar, Nov 22 2024
Comments