cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A026637 Triangular array T read by rows: T(n,0) = T(n,n) = 1 for n >= 0, T(n,1) = T(n,n-1) = floor((3*n-1)/2) for n >= 1, otherwise T(n,k) = T(n-1,k-1) + T(n-1,k) for 2 <= k <= n-2, n >= 4.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 4, 4, 1, 1, 5, 8, 5, 1, 1, 7, 13, 13, 7, 1, 1, 8, 20, 26, 20, 8, 1, 1, 10, 28, 46, 46, 28, 10, 1, 1, 11, 38, 74, 92, 74, 38, 11, 1, 1, 13, 49, 112, 166, 166, 112, 49, 13, 1, 1, 14, 62, 161, 278, 332, 278, 161, 62, 14, 1, 1, 16, 76, 223, 439, 610, 610, 439, 223, 76, 16, 1
Offset: 0

Views

Author

Keywords

Comments

T(n, k) = number of paths from (0, 0) to (n-k, k) in directed graph having vertices (i, j) and edges (i, j)-to-(i+1, j) and (i, j)-to-(i, j+1) for i, j >= 0 and edges (i, j)-to-(i+1, j+1) for i=0, j >= 1 and odd and for j=0, i >= 1 and odd.
See A228053 for a sequence with many terms in common with this one. - T. D. Noe, Aug 07 2013

Examples

			Triangle begins as:
  1;
  1,  1;
  1,  2,  1;
  1,  4,  4,   1;
  1,  5,  8,   5,   1;
  1,  7, 13,  13,   7,   1;
  1,  8, 20,  26,  20,   8,   1;
  1, 10, 28,  46,  46,  28,  10,   1;
  1, 11, 38,  74,  92,  74,  38,  11,  1;
  1, 13, 49, 112, 166, 166, 112,  49, 13,  1;
  1, 14, 62, 161, 278, 332, 278, 161, 62, 14,  1;
		

Crossrefs

Sums include: A000007 (alternating sign row), A026644 (row), A026645, A026646, A026647 (diagonal).

Programs

  • Haskell
    a026637 n k = a026637_tabl !! n !! k
    a026637_row n = a026637_tabl !! n
    a026637_tabl = [1] : [1,1] : map (fst . snd)
       (iterate f (0, ([1,2,1], [0,1,1,0]))) where
       f (i, (xs, ws)) = (1 - i,
         if i == 1 then (ys, ws) else (zipWith (+) ys ws, ws'))
            where ys = zipWith (+) ([0] ++ xs) (xs ++ [0])
                  ws' = [0,1,0,0] ++ drop 2 ws
    -- Reinhard Zumkeller, Aug 08 2013
    
  • Magma
    function T(n,k) // T = A026637
       if k eq 0 or k eq n then return 1;
       elif k eq 1 or k eq n-1 then return Floor((3*n-1)/2);
       else return T(n-1, k) + T(n-1, k-1);
       end if;
    end function;
    [T(n,k): k in [0..n], n in [0..15]]; // G. C. Greubel, Jun 28 2024
    
  • Maple
    A026637 := proc(n,k)
          option remember;
          if k=0 or k=n then
            1
        elif k=1 or k=n-1 then
            floor((3*n-1)/2) ;
        elif k <0 or k > n then
            0;
        else
            procname(n-1,k-1)+procname(n-1,k) ;
        end if;
    end proc: # R. J. Mathar, Apr 26 2015
  • Mathematica
    T[n_, k_] := T[n, k] = Which[k == 0 || k == n, 1, k == 1 || k == n-1, Floor[(3n-1)/2], k < 0 || k > n, 0, True, T[n-1, k-1] + T[n-1, k]];
    Table[T[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 30 2018 *)
  • SageMath
    def T(n,k): # T = A026637
        if k==0 or k==n: return 1
        elif k==1 or k==n-1: return ((3*n-1)//2)
        else: return T(n-1, k) + T(n-1, k-1)
    flatten([[T(n,k) for k in range(n+1)] for n in range(16)]) # G. C. Greubel, Jun 28 2024

Formula

From G. C. Greubel, Jun 28 2024: (Start)
T(n, n-k) = T(n, k).
T(2*n-1, n-1) = A026641(n), n >= 1.
Sum_{k=0..n} T(n, k) = A026644(n).
Sum_{k=0..n} (-1)^k*T(n, k) = A000007(n). (End)