cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A026646 a(n) = Sum_{i=0..n} Sum_{j=0..n} A026637(i,j).

Original entry on oeis.org

1, 3, 7, 17, 37, 79, 163, 333, 673, 1355, 2719, 5449, 10909, 21831, 43675, 87365, 174745, 349507, 699031, 1398081, 2796181, 5592383, 11184787, 22369597, 44739217, 89478459, 178956943, 357913913, 715827853, 1431655735
Offset: 0

Views

Author

Keywords

Comments

a(n) indexes the corner blocks on the Jacobsthal spiral built from blocks of unit area (using J(1) and J(2) as the sides of the first block). - Paul Barry, Mar 06 2008
Partial sums of A026644, which are the row sums of A026637. - Paul Barry, Mar 06 2008

Crossrefs

Programs

  • Magma
    [(2^(n+4) -(6*n+9+(-1)^n))/6: n in [0..40]]; // G. C. Greubel, Jul 01 2024
    
  • Mathematica
    CoefficientList[Series[(1-x^2+2x^3)/((1-x)(1-2x)(1-x^2)), {x, 0, 29}], x] (* Metin Sariyar, Sep 22 2019 *)
    LinearRecurrence[{3,-1,-3,2}, {1,3,7,17}, 41] (* G. C. Greubel, Jul 01 2024 *)
  • SageMath
    [(2^(n+4) - (-1)^n -9 - 6*n)/6 for n in range(41)] # G. C. Greubel, Jul 01 2024

Formula

G.f.: (1 -x^2 +2*x^3)/((1-x)*(1-2*x)*(1-x^2)). - Ralf Stephan, Apr 30 2004
From Paul Barry, Mar 06 2008: (Start)
a(n) = A001045(n+3) - 2*floor((n+2)/2).
a(n) = -n + Sum_{k=0..n} A001045(k+2) = A084639(n+1) - n. (End)
a(n+1) = 2*a(n) + A109613(n), a(0)=1. - Paul Curtz, Sep 22 2019