A026637
Triangular array T read by rows: T(n,0) = T(n,n) = 1 for n >= 0, T(n,1) = T(n,n-1) = floor((3*n-1)/2) for n >= 1, otherwise T(n,k) = T(n-1,k-1) + T(n-1,k) for 2 <= k <= n-2, n >= 4.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 4, 4, 1, 1, 5, 8, 5, 1, 1, 7, 13, 13, 7, 1, 1, 8, 20, 26, 20, 8, 1, 1, 10, 28, 46, 46, 28, 10, 1, 1, 11, 38, 74, 92, 74, 38, 11, 1, 1, 13, 49, 112, 166, 166, 112, 49, 13, 1, 1, 14, 62, 161, 278, 332, 278, 161, 62, 14, 1, 1, 16, 76, 223, 439, 610, 610, 439, 223, 76, 16, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 2, 1;
1, 4, 4, 1;
1, 5, 8, 5, 1;
1, 7, 13, 13, 7, 1;
1, 8, 20, 26, 20, 8, 1;
1, 10, 28, 46, 46, 28, 10, 1;
1, 11, 38, 74, 92, 74, 38, 11, 1;
1, 13, 49, 112, 166, 166, 112, 49, 13, 1;
1, 14, 62, 161, 278, 332, 278, 161, 62, 14, 1;
-
a026637 n k = a026637_tabl !! n !! k
a026637_row n = a026637_tabl !! n
a026637_tabl = [1] : [1,1] : map (fst . snd)
(iterate f (0, ([1,2,1], [0,1,1,0]))) where
f (i, (xs, ws)) = (1 - i,
if i == 1 then (ys, ws) else (zipWith (+) ys ws, ws'))
where ys = zipWith (+) ([0] ++ xs) (xs ++ [0])
ws' = [0,1,0,0] ++ drop 2 ws
-- Reinhard Zumkeller, Aug 08 2013
-
function T(n,k) // T = A026637
if k eq 0 or k eq n then return 1;
elif k eq 1 or k eq n-1 then return Floor((3*n-1)/2);
else return T(n-1, k) + T(n-1, k-1);
end if;
end function;
[T(n,k): k in [0..n], n in [0..15]]; // G. C. Greubel, Jun 28 2024
-
A026637 := proc(n,k)
option remember;
if k=0 or k=n then
1
elif k=1 or k=n-1 then
floor((3*n-1)/2) ;
elif k <0 or k > n then
0;
else
procname(n-1,k-1)+procname(n-1,k) ;
end if;
end proc: # R. J. Mathar, Apr 26 2015
-
T[n_, k_] := T[n, k] = Which[k == 0 || k == n, 1, k == 1 || k == n-1, Floor[(3n-1)/2], k < 0 || k > n, 0, True, T[n-1, k-1] + T[n-1, k]];
Table[T[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 30 2018 *)
-
def T(n,k): # T = A026637
if k==0 or k==n: return 1
elif k==1 or k==n-1: return ((3*n-1)//2)
else: return T(n-1, k) + T(n-1, k-1)
flatten([[T(n,k) for k in range(n+1)] for n in range(16)]) # G. C. Greubel, Jun 28 2024
Original entry on oeis.org
1, 7, 28, 112, 439, 1711, 6652, 25846, 100450, 390670, 1520764, 5925718, 23112931, 90239407, 352654084, 1379410438, 5400188206, 21157958962, 82959736504, 325514137048, 1278093308806, 5021436970822, 19740128055928
Offset: 2
-
[n le 2 select 7^(n-1) else ((7*n^2+3*n+2)*Self(n-1) + 2*n*(2*n+1)*Self(n-2))/(2*(n-1)*(n+2)): n in [1..40]]; // G. C. Greubel, Jul 01 2024
-
a[n_]:= a[n]= If[n<4, 7^(n-2), ((7*n^2-11*n+6)*a[n-1] + 2*(n-1)*(2*n- 1)*a[n-2])/(2*(n-2)*(n+1))];
Table[a[n], {n,2,40}] (* G. C. Greubel, Jul 01 2024 *)
-
@CachedFunction
def a(n): # a = A026642
if n<4: return 7^(n-2)
else: return ((7*n^2-11*n+6)*a(n-1) + 2*(n-1)*(2*n-1)*a(n-2))/(2*(n-2)*(n+1))
[a(n) for n in range(2,41)] # G. C. Greubel, Jul 01 2024
Original entry on oeis.org
1, 2, 8, 26, 92, 332, 1220, 4538, 17036, 64412, 244928, 935684, 3588392, 13806704, 53271548, 206040506, 798600332, 3101109164, 12062148368, 46986821516, 183276382472, 715748620424, 2798274135368, 10951009023716, 42895901012792, 168167959150232, 659793819847040
Offset: 0
-
[1] cat [n le 2 select 2^(2*n-1) else ((7*n-4)*Self(n-1) + 2*(2*n-1)*Self(n-2))/(2*n): n in [1..40]]; // G. C. Greubel, Jul 01 2024
-
CoefficientList[Series[1/(2+x)+3/((2+x)*Sqrt[1-4*x])-1,{x,0,20}],x] (* Vaclav Kotesovec, Oct 21 2012 *)
-
my(x='x+O('x^66)); Vec( 1/(2+x)+3/((2+x)*sqrt(1-4*x))-1 ) \\ Joerg Arndt, May 04 2013
-
@CachedFunction
def a(n): # a = A026638
if n<3: return 2^(n*(n+1)/2)
else: return ((7*n-4)*a(n-1) + 2*(2*n-1)*a(n-2))/(2*n)
[a(n) for n in range(41)] # G. C. Greubel, Jul 01 2024
Original entry on oeis.org
1, 5, 20, 74, 278, 1049, 3980, 15170, 58052, 222914, 858512, 3314960, 12829070, 49748705, 193259660, 751954250, 2929965020, 11431262390, 44651369720, 174597927740, 683388447260, 2677230376490, 10496941482680, 41188078562324
Offset: 1
-
[1] cat [n le 2 select 5*(3*n-2) else ((7*n^2+10*n+4)*Self(n-1) + 2*(2*n+1)*(n+1)*Self(n-2))/(2*n*(n+2)): n in [1..40]]; // G. C. Greubel, Jul 01 2024
-
a[n_]:= a[n]= If[n<4, (5*4^(n-1) -Boole[n==1])/4, ((7*n^2-4*n+1)*a[n- 1] +2*n*(2*n-1)*a[n-2])/(2*(n^2-1))];
Table[a[n], {n,40}] (* G. C. Greubel, Jul 01 2024 *)
-
@CachedFunction
def a(n): # a = A026639
if n<4: return (5*4^(n-1) - 0^(n-1))/4
else: return ((7*n^2 - 4*n + 1)*a(n-1) + 2*n*(2*n-1)*a(n-2))/(2*(n^2-1))
[a(n) for n in range(1,41)] # G. C. Greubel, Jul 01 2024
Original entry on oeis.org
1, 8, 38, 161, 662, 2672, 10676, 42398, 167756, 662252, 2610758, 10283861, 40490702, 159394424, 627456188, 2470223186, 9726696572, 38308366784, 150916209308, 594704861546, 2344206594332, 9243186573248, 36456892635848
Offset: 2
-
[1] cat [n le 2 select 4^(n+1) -3^(n+1) +1 else ((7*n^2+24*n+24 )*Self(n-1) + 2*(2*n+3)*(n+2)*Self(n-2))/(2*n*(n+4)): n in [1..40]]; // G. C. Greubel, Jul 01 2024
-
a[n_]:= a[n]= If[n<5, 4^(n-1) -3^(n-1) +1 -Boole[n==2], ((7*n^2 -4*n + 4)*a[n-1] +2*n*(2*n-1)*a[n-2])/(2*(n-2)*(n+2))];
Table[a[n], {n,2,40}] (* G. C. Greubel, Jul 01 2024 *)
-
@CachedFunction
def a(n): # a = A026640
if n<5: return 4^(n-1) -3^(n-1) +1 -int(n==2)
else: return ((7*n^2-4*n+4)*a(n-1) + 2*n*(2*n-1)*a(n-2))/(2*(n-2)*(n+2))
[a(n) for n in range(2,41)] # G. C. Greubel, Jul 01 2024
A026647
a(n) = Sum_{k=0..floor(n/2)} A026637(n-k, k).
Original entry on oeis.org
1, 1, 2, 3, 6, 10, 17, 27, 45, 73, 119, 192, 312, 505, 818, 1323, 2142, 3466, 5609, 9075, 14685, 23761, 38447, 62208, 100656, 162865, 263522, 426387, 689910, 1116298, 1806209, 2922507, 4728717, 7651225, 12379943, 20031168
Offset: 0
-
[1] cat [n le 5 select Binomial(n, Floor(n/2)) else Self(n-2) +Self(n-3) +2*Self(n-4) +Self(n-5) +3: n in [1..40]]; // G. C. Greubel, Jul 01 2024
-
a[n_]:= a[n]= If[n<6, Binomial[n, Floor[n/2]], a[n-2] +a[n-3] +2*a[n- 4] +a[n-5] +3]; (* a = A026647 *)
Table[a[n], {n,0,40}] (* G. C. Greubel, Jul 01 2024 *)
LinearRecurrence[{1,1,0,1,-1,-1},{1,1,2,3,6,10,17},40] (* Harvey P. Dale, Jan 19 2025 *)
-
@CachedFunction
def a(n): # a = A026647
if n<6: return binomial(n, n//2)
else: return a(n-2) + a(n-3) + 2*a(n-4) + a(n-5) + 3
[a(n) for n in range(41)] # G. C. Greubel, Jul 01 2024
A026645
a(n) = Sum_{k=0..floor(n/2)} A026637(n, k).
Original entry on oeis.org
1, 1, 3, 5, 14, 21, 55, 85, 216, 341, 848, 1365, 3340, 5461, 13191, 21845, 52208, 87381, 206968, 349525, 821514, 1398101, 3264044, 5592405, 12979006, 22369621, 51642594, 89478485, 205592744, 357913941, 818848135, 1431655765, 3262611696, 5726623061, 13003800704, 22906492245
Offset: 0
-
T[n_, k_]:= T[n, k]= If[k==0 || k==n, 1, If[k==1 || k==n-1, Floor[(3*n- 1)/2], T[n-1,k] + T[n-1,k-1] ]];
A026645[n_]:= Sum[T[n, k], {k, 0, Floor[n/2]}];
Table[A026645[n], {n,0,40}] (* G. C. Greubel, Jun 29 2024 *)
-
@CachedFunction
def T(n,k): # T = A026637
if k==0 or k==n: return 1
elif k==1 or k==n-1: return ((3*n-1)//2)
else: return T(n-1, k) + T(n-1, k-1)
def A026645(n): return sum(T(n,k) for k in range((n//2)+1))
[A026645(n) for n in range(41)] # G. C. Greubel, Jun 29 2024
A270810
Expansion of (x - x^2 + 2*x^3 + 2*x^4)/(1 - 3*x + 2*x^2).
Original entry on oeis.org
0, 1, 2, 6, 16, 36, 76, 156, 316, 636, 1276, 2556, 5116, 10236, 20476, 40956, 81916, 163836, 327676, 655356, 1310716, 2621436, 5242876, 10485756, 20971516, 41943036, 83886076, 167772156, 335544316, 671088636, 1342177276, 2684354556, 5368709116, 10737418236, 21474836476
Offset: 0
Agrees with
A048487 except for initial terms.
-
[n le 2 select n else 5*2^(n-2)-4: n in [0..40]]; // Bruno Berselli, Apr 08 2016
-
concat(0, Vec(x*(1-x+2*x^2+2*x^3)/((1-x)*(1-2*x)) + O(x^50))) \\ Colin Barker, Apr 12 2016
Showing 1-8 of 8 results.
Comments