A026637
Triangular array T read by rows: T(n,0) = T(n,n) = 1 for n >= 0, T(n,1) = T(n,n-1) = floor((3*n-1)/2) for n >= 1, otherwise T(n,k) = T(n-1,k-1) + T(n-1,k) for 2 <= k <= n-2, n >= 4.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 4, 4, 1, 1, 5, 8, 5, 1, 1, 7, 13, 13, 7, 1, 1, 8, 20, 26, 20, 8, 1, 1, 10, 28, 46, 46, 28, 10, 1, 1, 11, 38, 74, 92, 74, 38, 11, 1, 1, 13, 49, 112, 166, 166, 112, 49, 13, 1, 1, 14, 62, 161, 278, 332, 278, 161, 62, 14, 1, 1, 16, 76, 223, 439, 610, 610, 439, 223, 76, 16, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 2, 1;
1, 4, 4, 1;
1, 5, 8, 5, 1;
1, 7, 13, 13, 7, 1;
1, 8, 20, 26, 20, 8, 1;
1, 10, 28, 46, 46, 28, 10, 1;
1, 11, 38, 74, 92, 74, 38, 11, 1;
1, 13, 49, 112, 166, 166, 112, 49, 13, 1;
1, 14, 62, 161, 278, 332, 278, 161, 62, 14, 1;
-
a026637 n k = a026637_tabl !! n !! k
a026637_row n = a026637_tabl !! n
a026637_tabl = [1] : [1,1] : map (fst . snd)
(iterate f (0, ([1,2,1], [0,1,1,0]))) where
f (i, (xs, ws)) = (1 - i,
if i == 1 then (ys, ws) else (zipWith (+) ys ws, ws'))
where ys = zipWith (+) ([0] ++ xs) (xs ++ [0])
ws' = [0,1,0,0] ++ drop 2 ws
-- Reinhard Zumkeller, Aug 08 2013
-
function T(n,k) // T = A026637
if k eq 0 or k eq n then return 1;
elif k eq 1 or k eq n-1 then return Floor((3*n-1)/2);
else return T(n-1, k) + T(n-1, k-1);
end if;
end function;
[T(n,k): k in [0..n], n in [0..15]]; // G. C. Greubel, Jun 28 2024
-
A026637 := proc(n,k)
option remember;
if k=0 or k=n then
1
elif k=1 or k=n-1 then
floor((3*n-1)/2) ;
elif k <0 or k > n then
0;
else
procname(n-1,k-1)+procname(n-1,k) ;
end if;
end proc: # R. J. Mathar, Apr 26 2015
-
T[n_, k_] := T[n, k] = Which[k == 0 || k == n, 1, k == 1 || k == n-1, Floor[(3n-1)/2], k < 0 || k > n, 0, True, T[n-1, k-1] + T[n-1, k]];
Table[T[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 30 2018 *)
-
def T(n,k): # T = A026637
if k==0 or k==n: return 1
elif k==1 or k==n-1: return ((3*n-1)//2)
else: return T(n-1, k) + T(n-1, k-1)
flatten([[T(n,k) for k in range(n+1)] for n in range(16)]) # G. C. Greubel, Jun 28 2024
A080239
Antidiagonal sums of triangle A035317.
Original entry on oeis.org
1, 1, 2, 3, 6, 9, 15, 24, 40, 64, 104, 168, 273, 441, 714, 1155, 1870, 3025, 4895, 7920, 12816, 20736, 33552, 54288, 87841, 142129, 229970, 372099, 602070, 974169, 1576239, 2550408, 4126648, 6677056, 10803704, 17480760, 28284465, 45765225, 74049690
Offset: 1
- Reinhard Zumkeller, Table of n, a(n) for n = 1..1000
- H. Matsui et al., Problem B-1019, Fibonacci Quarterly, Vol. 45, Number 2; 2007; p. 182.
- H. Matsui and R. Miyadera et al., Pascal-like triangles and Fibonacci-like sequences, The Mathematical Gazette, Vol. 94, Number 529; March 2010; pp. 27-41.
- Index entries for linear recurrences with constant coefficients, signature (1,1,0,1,-1,-1).
-
List([1..40], n-> Sum([0..Int((n-1)/4)], k-> Fibonacci(n-4*k) )); # G. C. Greubel, Jul 13 2019
-
a080239 n = a080239_list !! (n-1)
a080239_list = 1 : 1 : zipWith (+)
(tail a011765_list) (zipWith (+) a080239_list $ tail a080239_list)
-- Reinhard Zumkeller, Jan 06 2012
-
I:=[1,1,2,3,6,9]; [n le 6 select I[n] else Self(n-1)+Self(n-2)+Self(n-4)-Self(n-5)-Self(n-6): n in [1..50]]; // Vincenzo Librandi, Jun 07 2015
-
f:=proc(n) option remember; local t1; if n <= 2 then RETURN(1); fi: if n mod 4 = 1 then t1:=1 else t1:=0; fi: f(n-1)+f(n-2)+t1; end; [seq(f(n), n=1..100)]; # N. J. A. Sloane, May 25 2008
with(combinat): f:=n-> fibonacci(n): p:=n-> 2*(floor((n+3)/2)-floor((n+3)/4)): t:=n-> 1/4*(2*cos(n*Pi/2)+1+(-1)^n): r4:=(a,b,c,d,n)-> a*t(n+3)+b*t(n+2)+c*t(n+1)+d*t(n): seq(f(p(n))*f(p(n)-r4(1,0,3,2,n))-r4(0,0,1,0,n), n = 1..33); # Gary Detlefs, Dec 09 2010
with(combinat): a:=proc(n); add(fibonacci(n-4*k),k=0..floor((n-1)/4)) end: seq(a(n), n = 1..33); # Johannes W. Meijer, Apr 19 2012
-
(*f[n] is the Fibonacci sequence and a[n] is the sequence of A080239*) f[n_]:= f[n] =f[n-1] +f[n-2]; f[1]=1; f[2]=1; a[n_]:= Which[n==1, 1, Mod[n, 4]==2, f[(n+2)/2]^2, Mod[n, 4]==3, (f[(n+5)/2]^2 - 2f[(n + 1)/2]^2 -1)/3, Mod[n, 4]==0, (f[(n+4)/2]^2 + f[n/2]^2 -1)/3, Mod[n, 4] == 1, (2f[(n+3)/2]^2 -f[(n-1)/2]^2 +1)/3] (* Hiroshi Matsui and Ryohei Miyadera, Aug 08 2006 *)
a=0; b=0; lst={a,b}; Do[z=a+b+1; AppendTo[lst,z]; a=b; b=z; z=a+b; AppendTo[lst,z]; a=b; b=z; z=a+b; AppendTo[lst,z]; a=b; b=z; z=a+b; AppendTo[lst,z]; a=b; b=z,{n,4!}]; lst (* Vladimir Joseph Stephan Orlovsky, Feb 16 2010 *)
(* Let f[n] be the Fibonacci sequence and a2[n] the sequence A080239 expressed by another formula discovered by Wataru Takeshita and Ryohei Miyadera *)
f=Fibonacci; a2[n_]:= Block[{m, s}, s = Mod[n, 4]; m = (n-s)/4;
Which[n==1, 1, n==2, 1, n==3, 2, s==0, 3 + Sum[f[4 i], {i, 2, m}], s == 1, 1 + Sum[f[4i+1], {i, 1, m}], s==2, 1 + Sum[f[4i+2], {i, 1, m}], s == 3, 2 + Sum[f[4i+3], {i, 1, m}]]]; Table[a2[n], {n, 1, 40}] (* Ryohei Miyadera, Apr 11 2014, minor update by Jean-François Alcover, Apr 29 2014 *)
LinearRecurrence[{1, 1, 0, 1, -1, -1}, {1, 1, 2, 3, 6, 9}, 41] (* Vincenzo Librandi, Jun 07 2015 *)
-
vector(40, n, f=fibonacci; sum(k=0,((n-1)\4), f(n-4*k))) \\ G. C. Greubel, Jul 13 2019
-
[sum(fibonacci(n-4*k) for k in (0..floor((n-1)/4))) for n in (1..40)] # G. C. Greubel, Jul 13 2019
Original entry on oeis.org
1, 7, 28, 112, 439, 1711, 6652, 25846, 100450, 390670, 1520764, 5925718, 23112931, 90239407, 352654084, 1379410438, 5400188206, 21157958962, 82959736504, 325514137048, 1278093308806, 5021436970822, 19740128055928
Offset: 2
-
[n le 2 select 7^(n-1) else ((7*n^2+3*n+2)*Self(n-1) + 2*n*(2*n+1)*Self(n-2))/(2*(n-1)*(n+2)): n in [1..40]]; // G. C. Greubel, Jul 01 2024
-
a[n_]:= a[n]= If[n<4, 7^(n-2), ((7*n^2-11*n+6)*a[n-1] + 2*(n-1)*(2*n- 1)*a[n-2])/(2*(n-2)*(n+1))];
Table[a[n], {n,2,40}] (* G. C. Greubel, Jul 01 2024 *)
-
@CachedFunction
def a(n): # a = A026642
if n<4: return 7^(n-2)
else: return ((7*n^2-11*n+6)*a(n-1) + 2*(n-1)*(2*n-1)*a(n-2))/(2*(n-2)*(n+1))
[a(n) for n in range(2,41)] # G. C. Greubel, Jul 01 2024
Original entry on oeis.org
1, 2, 8, 26, 92, 332, 1220, 4538, 17036, 64412, 244928, 935684, 3588392, 13806704, 53271548, 206040506, 798600332, 3101109164, 12062148368, 46986821516, 183276382472, 715748620424, 2798274135368, 10951009023716, 42895901012792, 168167959150232, 659793819847040
Offset: 0
-
[1] cat [n le 2 select 2^(2*n-1) else ((7*n-4)*Self(n-1) + 2*(2*n-1)*Self(n-2))/(2*n): n in [1..40]]; // G. C. Greubel, Jul 01 2024
-
CoefficientList[Series[1/(2+x)+3/((2+x)*Sqrt[1-4*x])-1,{x,0,20}],x] (* Vaclav Kotesovec, Oct 21 2012 *)
-
my(x='x+O('x^66)); Vec( 1/(2+x)+3/((2+x)*sqrt(1-4*x))-1 ) \\ Joerg Arndt, May 04 2013
-
@CachedFunction
def a(n): # a = A026638
if n<3: return 2^(n*(n+1)/2)
else: return ((7*n-4)*a(n-1) + 2*(2*n-1)*a(n-2))/(2*n)
[a(n) for n in range(41)] # G. C. Greubel, Jul 01 2024
Original entry on oeis.org
1, 5, 20, 74, 278, 1049, 3980, 15170, 58052, 222914, 858512, 3314960, 12829070, 49748705, 193259660, 751954250, 2929965020, 11431262390, 44651369720, 174597927740, 683388447260, 2677230376490, 10496941482680, 41188078562324
Offset: 1
-
[1] cat [n le 2 select 5*(3*n-2) else ((7*n^2+10*n+4)*Self(n-1) + 2*(2*n+1)*(n+1)*Self(n-2))/(2*n*(n+2)): n in [1..40]]; // G. C. Greubel, Jul 01 2024
-
a[n_]:= a[n]= If[n<4, (5*4^(n-1) -Boole[n==1])/4, ((7*n^2-4*n+1)*a[n- 1] +2*n*(2*n-1)*a[n-2])/(2*(n^2-1))];
Table[a[n], {n,40}] (* G. C. Greubel, Jul 01 2024 *)
-
@CachedFunction
def a(n): # a = A026639
if n<4: return (5*4^(n-1) - 0^(n-1))/4
else: return ((7*n^2 - 4*n + 1)*a(n-1) + 2*n*(2*n-1)*a(n-2))/(2*(n^2-1))
[a(n) for n in range(1,41)] # G. C. Greubel, Jul 01 2024
Original entry on oeis.org
1, 8, 38, 161, 662, 2672, 10676, 42398, 167756, 662252, 2610758, 10283861, 40490702, 159394424, 627456188, 2470223186, 9726696572, 38308366784, 150916209308, 594704861546, 2344206594332, 9243186573248, 36456892635848
Offset: 2
-
[1] cat [n le 2 select 4^(n+1) -3^(n+1) +1 else ((7*n^2+24*n+24 )*Self(n-1) + 2*(2*n+3)*(n+2)*Self(n-2))/(2*n*(n+4)): n in [1..40]]; // G. C. Greubel, Jul 01 2024
-
a[n_]:= a[n]= If[n<5, 4^(n-1) -3^(n-1) +1 -Boole[n==2], ((7*n^2 -4*n + 4)*a[n-1] +2*n*(2*n-1)*a[n-2])/(2*(n-2)*(n+2))];
Table[a[n], {n,2,40}] (* G. C. Greubel, Jul 01 2024 *)
-
@CachedFunction
def a(n): # a = A026640
if n<5: return 4^(n-1) -3^(n-1) +1 -int(n==2)
else: return ((7*n^2-4*n+4)*a(n-1) + 2*n*(2*n-1)*a(n-2))/(2*(n-2)*(n+2))
[a(n) for n in range(2,41)] # G. C. Greubel, Jul 01 2024
A026645
a(n) = Sum_{k=0..floor(n/2)} A026637(n, k).
Original entry on oeis.org
1, 1, 3, 5, 14, 21, 55, 85, 216, 341, 848, 1365, 3340, 5461, 13191, 21845, 52208, 87381, 206968, 349525, 821514, 1398101, 3264044, 5592405, 12979006, 22369621, 51642594, 89478485, 205592744, 357913941, 818848135, 1431655765, 3262611696, 5726623061, 13003800704, 22906492245
Offset: 0
-
T[n_, k_]:= T[n, k]= If[k==0 || k==n, 1, If[k==1 || k==n-1, Floor[(3*n- 1)/2], T[n-1,k] + T[n-1,k-1] ]];
A026645[n_]:= Sum[T[n, k], {k, 0, Floor[n/2]}];
Table[A026645[n], {n,0,40}] (* G. C. Greubel, Jun 29 2024 *)
-
@CachedFunction
def T(n,k): # T = A026637
if k==0 or k==n: return 1
elif k==1 or k==n-1: return ((3*n-1)//2)
else: return T(n-1, k) + T(n-1, k-1)
def A026645(n): return sum(T(n,k) for k in range((n//2)+1))
[A026645(n) for n in range(41)] # G. C. Greubel, Jun 29 2024
Showing 1-7 of 7 results.
Comments