cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A026637 Triangular array T read by rows: T(n,0) = T(n,n) = 1 for n >= 0, T(n,1) = T(n,n-1) = floor((3*n-1)/2) for n >= 1, otherwise T(n,k) = T(n-1,k-1) + T(n-1,k) for 2 <= k <= n-2, n >= 4.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 4, 4, 1, 1, 5, 8, 5, 1, 1, 7, 13, 13, 7, 1, 1, 8, 20, 26, 20, 8, 1, 1, 10, 28, 46, 46, 28, 10, 1, 1, 11, 38, 74, 92, 74, 38, 11, 1, 1, 13, 49, 112, 166, 166, 112, 49, 13, 1, 1, 14, 62, 161, 278, 332, 278, 161, 62, 14, 1, 1, 16, 76, 223, 439, 610, 610, 439, 223, 76, 16, 1
Offset: 0

Views

Author

Keywords

Comments

T(n, k) = number of paths from (0, 0) to (n-k, k) in directed graph having vertices (i, j) and edges (i, j)-to-(i+1, j) and (i, j)-to-(i, j+1) for i, j >= 0 and edges (i, j)-to-(i+1, j+1) for i=0, j >= 1 and odd and for j=0, i >= 1 and odd.
See A228053 for a sequence with many terms in common with this one. - T. D. Noe, Aug 07 2013

Examples

			Triangle begins as:
  1;
  1,  1;
  1,  2,  1;
  1,  4,  4,   1;
  1,  5,  8,   5,   1;
  1,  7, 13,  13,   7,   1;
  1,  8, 20,  26,  20,   8,   1;
  1, 10, 28,  46,  46,  28,  10,   1;
  1, 11, 38,  74,  92,  74,  38,  11,  1;
  1, 13, 49, 112, 166, 166, 112,  49, 13,  1;
  1, 14, 62, 161, 278, 332, 278, 161, 62, 14,  1;
		

Crossrefs

Sums include: A000007 (alternating sign row), A026644 (row), A026645, A026646, A026647 (diagonal).

Programs

  • Haskell
    a026637 n k = a026637_tabl !! n !! k
    a026637_row n = a026637_tabl !! n
    a026637_tabl = [1] : [1,1] : map (fst . snd)
       (iterate f (0, ([1,2,1], [0,1,1,0]))) where
       f (i, (xs, ws)) = (1 - i,
         if i == 1 then (ys, ws) else (zipWith (+) ys ws, ws'))
            where ys = zipWith (+) ([0] ++ xs) (xs ++ [0])
                  ws' = [0,1,0,0] ++ drop 2 ws
    -- Reinhard Zumkeller, Aug 08 2013
    
  • Magma
    function T(n,k) // T = A026637
       if k eq 0 or k eq n then return 1;
       elif k eq 1 or k eq n-1 then return Floor((3*n-1)/2);
       else return T(n-1, k) + T(n-1, k-1);
       end if;
    end function;
    [T(n,k): k in [0..n], n in [0..15]]; // G. C. Greubel, Jun 28 2024
    
  • Maple
    A026637 := proc(n,k)
          option remember;
          if k=0 or k=n then
            1
        elif k=1 or k=n-1 then
            floor((3*n-1)/2) ;
        elif k <0 or k > n then
            0;
        else
            procname(n-1,k-1)+procname(n-1,k) ;
        end if;
    end proc: # R. J. Mathar, Apr 26 2015
  • Mathematica
    T[n_, k_] := T[n, k] = Which[k == 0 || k == n, 1, k == 1 || k == n-1, Floor[(3n-1)/2], k < 0 || k > n, 0, True, T[n-1, k-1] + T[n-1, k]];
    Table[T[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 30 2018 *)
  • SageMath
    def T(n,k): # T = A026637
        if k==0 or k==n: return 1
        elif k==1 or k==n-1: return ((3*n-1)//2)
        else: return T(n-1, k) + T(n-1, k-1)
    flatten([[T(n,k) for k in range(n+1)] for n in range(16)]) # G. C. Greubel, Jun 28 2024

Formula

From G. C. Greubel, Jun 28 2024: (Start)
T(n, n-k) = T(n, k).
T(2*n-1, n-1) = A026641(n), n >= 1.
Sum_{k=0..n} T(n, k) = A026644(n).
Sum_{k=0..n} (-1)^k*T(n, k) = A000007(n). (End)

A026642 a(n) = A026637(2*n-1, n-2).

Original entry on oeis.org

1, 7, 28, 112, 439, 1711, 6652, 25846, 100450, 390670, 1520764, 5925718, 23112931, 90239407, 352654084, 1379410438, 5400188206, 21157958962, 82959736504, 325514137048, 1278093308806, 5021436970822, 19740128055928
Offset: 2

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [n le 2 select 7^(n-1) else ((7*n^2+3*n+2)*Self(n-1) + 2*n*(2*n+1)*Self(n-2))/(2*(n-1)*(n+2)): n in [1..40]]; // G. C. Greubel, Jul 01 2024
    
  • Mathematica
    a[n_]:= a[n]= If[n<4, 7^(n-2), ((7*n^2-11*n+6)*a[n-1] + 2*(n-1)*(2*n- 1)*a[n-2])/(2*(n-2)*(n+1))];
    Table[a[n], {n,2,40}] (* G. C. Greubel, Jul 01 2024 *)
  • SageMath
    @CachedFunction
    def a(n): # a = A026642
        if n<4: return 7^(n-2)
        else: return ((7*n^2-11*n+6)*a(n-1) + 2*(n-1)*(2*n-1)*a(n-2))/(2*(n-2)*(n+1))
    [a(n) for n in range(2,41)] # G. C. Greubel, Jul 01 2024

Formula

a(n) = ( (7*n^2 - 11*n + 6)*a(n-1) + 2*(n-1)*(2*n-1)*a(n-2) )/(2*(n-2)*(n+1)), n >= 4. - G. C. Greubel, Jul 01 2024

A026638 a(n) = A026637(2*n, n).

Original entry on oeis.org

1, 2, 8, 26, 92, 332, 1220, 4538, 17036, 64412, 244928, 935684, 3588392, 13806704, 53271548, 206040506, 798600332, 3101109164, 12062148368, 46986821516, 183276382472, 715748620424, 2798274135368, 10951009023716, 42895901012792, 168167959150232, 659793819847040
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [1] cat [n le 2 select 2^(2*n-1) else ((7*n-4)*Self(n-1) + 2*(2*n-1)*Self(n-2))/(2*n): n in [1..40]]; // G. C. Greubel, Jul 01 2024
    
  • Mathematica
    CoefficientList[Series[1/(2+x)+3/((2+x)*Sqrt[1-4*x])-1,{x,0,20}],x] (* Vaclav Kotesovec, Oct 21 2012 *)
  • PARI
    my(x='x+O('x^66)); Vec( 1/(2+x)+3/((2+x)*sqrt(1-4*x))-1 ) \\ Joerg Arndt, May 04 2013
    
  • SageMath
    @CachedFunction
    def a(n): # a = A026638
        if n<3: return 2^(n*(n+1)/2)
        else: return ((7*n-4)*a(n-1) + 2*(2*n-1)*a(n-2))/(2*n)
    [a(n) for n in range(41)] # G. C. Greubel, Jul 01 2024

Formula

From Vaclav Kotesovec, Oct 21 2012: (Start)
G.f.: (3 - (x+1)*sqrt(1-4*x))/((x+2)*sqrt(1-4*x)).
Recurrence: 2*n*a(n) = (7*n-4)*a(n-1) + 2*(2*n-1)*a(n-2).
a(n) ~ 2^(2*n+2)/(3*sqrt(Pi*n)) (End)

A026640 a(n) = A026637(2*n, n-2).

Original entry on oeis.org

1, 8, 38, 161, 662, 2672, 10676, 42398, 167756, 662252, 2610758, 10283861, 40490702, 159394424, 627456188, 2470223186, 9726696572, 38308366784, 150916209308, 594704861546, 2344206594332, 9243186573248, 36456892635848
Offset: 2

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [1] cat [n le 2 select 4^(n+1) -3^(n+1) +1 else ((7*n^2+24*n+24 )*Self(n-1) + 2*(2*n+3)*(n+2)*Self(n-2))/(2*n*(n+4)): n in [1..40]]; // G. C. Greubel, Jul 01 2024
    
  • Mathematica
    a[n_]:= a[n]= If[n<5, 4^(n-1) -3^(n-1) +1 -Boole[n==2], ((7*n^2 -4*n + 4)*a[n-1] +2*n*(2*n-1)*a[n-2])/(2*(n-2)*(n+2))];
    Table[a[n], {n,2,40}] (* G. C. Greubel, Jul 01 2024 *)
  • SageMath
    @CachedFunction
    def a(n): # a = A026640
        if n<5: return 4^(n-1) -3^(n-1) +1 -int(n==2)
        else: return ((7*n^2-4*n+4)*a(n-1) + 2*n*(2*n-1)*a(n-2))/(2*(n-2)*(n+2))
    [a(n) for n in range(2,41)] # G. C. Greubel, Jul 01 2024

Formula

a(n) = ((7*n^2 - 4*n + 4)*a(n-1) + 2*n*(2*n-1)*a(n-2))/(2*(n-2)*(n+2)), n >= 5. - G. C. Greubel, Jul 01 2024

A026643 a(n) = A026637(n, floor(n/2)).

Original entry on oeis.org

1, 1, 2, 4, 8, 13, 26, 46, 92, 166, 332, 610, 1220, 2269, 4538, 8518, 17036, 32206, 64412, 122464, 244928, 467842, 935684, 1794196, 3588392, 6903352, 13806704, 26635774, 53271548, 103020253, 206040506, 399300166, 798600332
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [1] cat [n le 4 select 2^(n-1) else (4*Self(n-1) +(7*n-9)*Self(n-2) +2*Self(n-3) +4*(n-1)*Self(n-4))/(2*(n+1)): n in [1..40]]; // G. C. Greubel, Jul 01 2024
    
  • Mathematica
    T[n_, k_]:= T[n, k] = If[k==0 || k==n, 1, If[k==1 || k==n-1, Floor[(3*n -1)/2], T[n-1,k-1] + T[n-1,k] ]]; (* A026637 *)
    A026643[n_]:= T[n, Floor[n/2]];
    Table[A026643[n], {n,0,40}] (* G. C. Greubel, Jul 01 2024 *)
  • SageMath
    @CachedFunction
    def a(n): # a = A026643
        if n<5: return (1,1,2,4,8)[n]
        else: return (4*a(n-1) +(7*n-9)*a(n-2) +2*a(n-3) +4*(n-1)*a(n-4))/(2*(n+1))
    [a(n) for n in range(41)] # G. C. Greubel, Jul 01 2024

Formula

a(n) = (4*a(n-1) + (7*n-9)*a(n-2) + 2*a(n-3) + 4*(n-1)*a(n-4))/(2*(n+1)) with a(0) = a(1) = 1, a(2) = 2, a(3) = 4, a(4) = 8. - G. C. Greubel, Jul 01 2024

A026646 a(n) = Sum_{i=0..n} Sum_{j=0..n} A026637(i,j).

Original entry on oeis.org

1, 3, 7, 17, 37, 79, 163, 333, 673, 1355, 2719, 5449, 10909, 21831, 43675, 87365, 174745, 349507, 699031, 1398081, 2796181, 5592383, 11184787, 22369597, 44739217, 89478459, 178956943, 357913913, 715827853, 1431655735
Offset: 0

Views

Author

Keywords

Comments

a(n) indexes the corner blocks on the Jacobsthal spiral built from blocks of unit area (using J(1) and J(2) as the sides of the first block). - Paul Barry, Mar 06 2008
Partial sums of A026644, which are the row sums of A026637. - Paul Barry, Mar 06 2008

Crossrefs

Programs

  • Magma
    [(2^(n+4) -(6*n+9+(-1)^n))/6: n in [0..40]]; // G. C. Greubel, Jul 01 2024
    
  • Mathematica
    CoefficientList[Series[(1-x^2+2x^3)/((1-x)(1-2x)(1-x^2)), {x, 0, 29}], x] (* Metin Sariyar, Sep 22 2019 *)
    LinearRecurrence[{3,-1,-3,2}, {1,3,7,17}, 41] (* G. C. Greubel, Jul 01 2024 *)
  • SageMath
    [(2^(n+4) - (-1)^n -9 - 6*n)/6 for n in range(41)] # G. C. Greubel, Jul 01 2024

Formula

G.f.: (1 -x^2 +2*x^3)/((1-x)*(1-2*x)*(1-x^2)). - Ralf Stephan, Apr 30 2004
From Paul Barry, Mar 06 2008: (Start)
a(n) = A001045(n+3) - 2*floor((n+2)/2).
a(n) = -n + Sum_{k=0..n} A001045(k+2) = A084639(n+1) - n. (End)
a(n+1) = 2*a(n) + A109613(n), a(0)=1. - Paul Curtz, Sep 22 2019

A026647 a(n) = Sum_{k=0..floor(n/2)} A026637(n-k, k).

Original entry on oeis.org

1, 1, 2, 3, 6, 10, 17, 27, 45, 73, 119, 192, 312, 505, 818, 1323, 2142, 3466, 5609, 9075, 14685, 23761, 38447, 62208, 100656, 162865, 263522, 426387, 689910, 1116298, 1806209, 2922507, 4728717, 7651225, 12379943, 20031168
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [1] cat [n le 5 select Binomial(n, Floor(n/2)) else Self(n-2) +Self(n-3) +2*Self(n-4) +Self(n-5) +3: n in [1..40]]; // G. C. Greubel, Jul 01 2024
    
  • Mathematica
    a[n_]:= a[n]= If[n<6, Binomial[n, Floor[n/2]], a[n-2] +a[n-3] +2*a[n- 4] +a[n-5] +3]; (* a = A026647 *)
    Table[a[n], {n,0,40}] (* G. C. Greubel, Jul 01 2024 *)
    LinearRecurrence[{1,1,0,1,-1,-1},{1,1,2,3,6,10,17},40] (* Harvey P. Dale, Jan 19 2025 *)
  • SageMath
    @CachedFunction
    def a(n): # a = A026647
        if n<6: return binomial(n, n//2)
        else: return a(n-2) + a(n-3) + 2*a(n-4) + a(n-5) + 3
    [a(n) for n in range(41)] # G. C. Greubel, Jul 01 2024

Formula

G.f.: (1 + x^5 + x^6)/((1-x^4)*(1-x-x^2)).
From G. C. Greubel, Jul 01 2024: (Start)
a(n) = [n=0] - (3/4) + (1/4)*(-1)^n - (1/10)*2^((1-(-1)^n)/2)*(-1)^floor((n+1)/2) + (3/5)*LucasL(n+1).
a(n) = (1/20)*( 12*LucasL(n+1) + 5*(-1)^n - 15 - 2*cos(n*Pi/2) + 4*sin(n*Pi/2) ) + [n=0].
a(n) = a(n-2) + a(n-3) + 2*a(n-4) + a(n-5) + 3, with a(0) = a(1) = 1, a(2) = 2, a(3) = 3, a(4) = 6, a(5) = 10. (End)

A026645 a(n) = Sum_{k=0..floor(n/2)} A026637(n, k).

Original entry on oeis.org

1, 1, 3, 5, 14, 21, 55, 85, 216, 341, 848, 1365, 3340, 5461, 13191, 21845, 52208, 87381, 206968, 349525, 821514, 1398101, 3264044, 5592405, 12979006, 22369621, 51642594, 89478485, 205592744, 357913941, 818848135, 1431655765, 3262611696, 5726623061, 13003800704, 22906492245
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    T[n_, k_]:= T[n, k]= If[k==0 || k==n, 1, If[k==1 || k==n-1, Floor[(3*n- 1)/2], T[n-1,k] + T[n-1,k-1] ]];
    A026645[n_]:= Sum[T[n, k], {k, 0, Floor[n/2]}];
    Table[A026645[n], {n,0,40}] (* G. C. Greubel, Jun 29 2024 *)
  • SageMath
    @CachedFunction
    def T(n,k): # T = A026637
        if k==0 or k==n: return 1
        elif k==1 or k==n-1: return ((3*n-1)//2)
        else: return T(n-1, k) + T(n-1, k-1)
    def A026645(n): return sum(T(n,k) for k in range((n//2)+1))
    [A026645(n) for n in range(41)] # G. C. Greubel, Jun 29 2024
Showing 1-8 of 8 results.