A026637
Triangular array T read by rows: T(n,0) = T(n,n) = 1 for n >= 0, T(n,1) = T(n,n-1) = floor((3*n-1)/2) for n >= 1, otherwise T(n,k) = T(n-1,k-1) + T(n-1,k) for 2 <= k <= n-2, n >= 4.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 4, 4, 1, 1, 5, 8, 5, 1, 1, 7, 13, 13, 7, 1, 1, 8, 20, 26, 20, 8, 1, 1, 10, 28, 46, 46, 28, 10, 1, 1, 11, 38, 74, 92, 74, 38, 11, 1, 1, 13, 49, 112, 166, 166, 112, 49, 13, 1, 1, 14, 62, 161, 278, 332, 278, 161, 62, 14, 1, 1, 16, 76, 223, 439, 610, 610, 439, 223, 76, 16, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 2, 1;
1, 4, 4, 1;
1, 5, 8, 5, 1;
1, 7, 13, 13, 7, 1;
1, 8, 20, 26, 20, 8, 1;
1, 10, 28, 46, 46, 28, 10, 1;
1, 11, 38, 74, 92, 74, 38, 11, 1;
1, 13, 49, 112, 166, 166, 112, 49, 13, 1;
1, 14, 62, 161, 278, 332, 278, 161, 62, 14, 1;
-
a026637 n k = a026637_tabl !! n !! k
a026637_row n = a026637_tabl !! n
a026637_tabl = [1] : [1,1] : map (fst . snd)
(iterate f (0, ([1,2,1], [0,1,1,0]))) where
f (i, (xs, ws)) = (1 - i,
if i == 1 then (ys, ws) else (zipWith (+) ys ws, ws'))
where ys = zipWith (+) ([0] ++ xs) (xs ++ [0])
ws' = [0,1,0,0] ++ drop 2 ws
-- Reinhard Zumkeller, Aug 08 2013
-
function T(n,k) // T = A026637
if k eq 0 or k eq n then return 1;
elif k eq 1 or k eq n-1 then return Floor((3*n-1)/2);
else return T(n-1, k) + T(n-1, k-1);
end if;
end function;
[T(n,k): k in [0..n], n in [0..15]]; // G. C. Greubel, Jun 28 2024
-
A026637 := proc(n,k)
option remember;
if k=0 or k=n then
1
elif k=1 or k=n-1 then
floor((3*n-1)/2) ;
elif k <0 or k > n then
0;
else
procname(n-1,k-1)+procname(n-1,k) ;
end if;
end proc: # R. J. Mathar, Apr 26 2015
-
T[n_, k_] := T[n, k] = Which[k == 0 || k == n, 1, k == 1 || k == n-1, Floor[(3n-1)/2], k < 0 || k > n, 0, True, T[n-1, k-1] + T[n-1, k]];
Table[T[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 30 2018 *)
-
def T(n,k): # T = A026637
if k==0 or k==n: return 1
elif k==1 or k==n-1: return ((3*n-1)//2)
else: return T(n-1, k) + T(n-1, k-1)
flatten([[T(n,k) for k in range(n+1)] for n in range(16)]) # G. C. Greubel, Jun 28 2024
A014430
Subtract 1 from Pascal's triangle, read by rows.
Original entry on oeis.org
1, 2, 2, 3, 5, 3, 4, 9, 9, 4, 5, 14, 19, 14, 5, 6, 20, 34, 34, 20, 6, 7, 27, 55, 69, 55, 27, 7, 8, 35, 83, 125, 125, 83, 35, 8, 9, 44, 119, 209, 251, 209, 119, 44, 9, 10, 54, 164, 329, 461, 461, 329, 164, 54, 10, 11, 65, 219, 494, 791, 923, 791, 494, 219, 65, 11
Offset: 0
Triangle begins:
1;
2, 2;
3, 5, 3;
4, 9, 9, 4;
5, 14, 19, 14, 5;
6, 20, 34, 34, 20, 6;
7, 27, 55, 69, 55, 27, 7;
8, 35, 83, 125, 125, 83, 35, 8;
-
a014430 n k = a014430_tabl !! n !! k
a014430_row n = a014430_tabl !! n
a014430_tabl = map (init . tail) $ drop 2 a014473_tabl
-- Reinhard Zumkeller, Apr 10 2012
-
[Binomial(n+2,k+1)-1: k in [0..n], n in [0..13]]; // G. C. Greubel, Feb 25 2023
-
Table[Sum[Sum[Binomial[m, j], {m, j, j+(n-k)}], {j,0,k}], {n,0,10}, {k, 0,n}]//Flatten (* Michael De Vlieger, Sep 01 2020 *)
Table[Binomial[n+2,k+1] -1, {n,0,13}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 25 2023 *)
-
flatten([[binomial(n+2,k+1)-1 for k in range(n+1)] for n in range(14)]) # G. C. Greubel, Feb 25 2023
Original entry on oeis.org
1, 2, 8, 26, 92, 332, 1220, 4538, 17036, 64412, 244928, 935684, 3588392, 13806704, 53271548, 206040506, 798600332, 3101109164, 12062148368, 46986821516, 183276382472, 715748620424, 2798274135368, 10951009023716, 42895901012792, 168167959150232, 659793819847040
Offset: 0
-
[1] cat [n le 2 select 2^(2*n-1) else ((7*n-4)*Self(n-1) + 2*(2*n-1)*Self(n-2))/(2*n): n in [1..40]]; // G. C. Greubel, Jul 01 2024
-
CoefficientList[Series[1/(2+x)+3/((2+x)*Sqrt[1-4*x])-1,{x,0,20}],x] (* Vaclav Kotesovec, Oct 21 2012 *)
-
my(x='x+O('x^66)); Vec( 1/(2+x)+3/((2+x)*sqrt(1-4*x))-1 ) \\ Joerg Arndt, May 04 2013
-
@CachedFunction
def a(n): # a = A026638
if n<3: return 2^(n*(n+1)/2)
else: return ((7*n-4)*a(n-1) + 2*(2*n-1)*a(n-2))/(2*n)
[a(n) for n in range(41)] # G. C. Greubel, Jul 01 2024
Original entry on oeis.org
1, 5, 20, 74, 278, 1049, 3980, 15170, 58052, 222914, 858512, 3314960, 12829070, 49748705, 193259660, 751954250, 2929965020, 11431262390, 44651369720, 174597927740, 683388447260, 2677230376490, 10496941482680, 41188078562324
Offset: 1
-
[1] cat [n le 2 select 5*(3*n-2) else ((7*n^2+10*n+4)*Self(n-1) + 2*(2*n+1)*(n+1)*Self(n-2))/(2*n*(n+2)): n in [1..40]]; // G. C. Greubel, Jul 01 2024
-
a[n_]:= a[n]= If[n<4, (5*4^(n-1) -Boole[n==1])/4, ((7*n^2-4*n+1)*a[n- 1] +2*n*(2*n-1)*a[n-2])/(2*(n^2-1))];
Table[a[n], {n,40}] (* G. C. Greubel, Jul 01 2024 *)
-
@CachedFunction
def a(n): # a = A026639
if n<4: return (5*4^(n-1) - 0^(n-1))/4
else: return ((7*n^2 - 4*n + 1)*a(n-1) + 2*n*(2*n-1)*a(n-2))/(2*(n^2-1))
[a(n) for n in range(1,41)] # G. C. Greubel, Jul 01 2024
Original entry on oeis.org
1, 8, 38, 161, 662, 2672, 10676, 42398, 167756, 662252, 2610758, 10283861, 40490702, 159394424, 627456188, 2470223186, 9726696572, 38308366784, 150916209308, 594704861546, 2344206594332, 9243186573248, 36456892635848
Offset: 2
-
[1] cat [n le 2 select 4^(n+1) -3^(n+1) +1 else ((7*n^2+24*n+24 )*Self(n-1) + 2*(2*n+3)*(n+2)*Self(n-2))/(2*n*(n+4)): n in [1..40]]; // G. C. Greubel, Jul 01 2024
-
a[n_]:= a[n]= If[n<5, 4^(n-1) -3^(n-1) +1 -Boole[n==2], ((7*n^2 -4*n + 4)*a[n-1] +2*n*(2*n-1)*a[n-2])/(2*(n-2)*(n+2))];
Table[a[n], {n,2,40}] (* G. C. Greubel, Jul 01 2024 *)
-
@CachedFunction
def a(n): # a = A026640
if n<5: return 4^(n-1) -3^(n-1) +1 -int(n==2)
else: return ((7*n^2-4*n+4)*a(n-1) + 2*n*(2*n-1)*a(n-2))/(2*(n-2)*(n+2))
[a(n) for n in range(2,41)] # G. C. Greubel, Jul 01 2024
Original entry on oeis.org
1, 1, 2, 4, 8, 13, 26, 46, 92, 166, 332, 610, 1220, 2269, 4538, 8518, 17036, 32206, 64412, 122464, 244928, 467842, 935684, 1794196, 3588392, 6903352, 13806704, 26635774, 53271548, 103020253, 206040506, 399300166, 798600332
Offset: 0
-
[1] cat [n le 4 select 2^(n-1) else (4*Self(n-1) +(7*n-9)*Self(n-2) +2*Self(n-3) +4*(n-1)*Self(n-4))/(2*(n+1)): n in [1..40]]; // G. C. Greubel, Jul 01 2024
-
T[n_, k_]:= T[n, k] = If[k==0 || k==n, 1, If[k==1 || k==n-1, Floor[(3*n -1)/2], T[n-1,k-1] + T[n-1,k] ]]; (* A026637 *)
A026643[n_]:= T[n, Floor[n/2]];
Table[A026643[n], {n,0,40}] (* G. C. Greubel, Jul 01 2024 *)
-
@CachedFunction
def a(n): # a = A026643
if n<5: return (1,1,2,4,8)[n]
else: return (4*a(n-1) +(7*n-9)*a(n-2) +2*a(n-3) +4*(n-1)*a(n-4))/(2*(n+1))
[a(n) for n in range(41)] # G. C. Greubel, Jul 01 2024
A026646
a(n) = Sum_{i=0..n} Sum_{j=0..n} A026637(i,j).
Original entry on oeis.org
1, 3, 7, 17, 37, 79, 163, 333, 673, 1355, 2719, 5449, 10909, 21831, 43675, 87365, 174745, 349507, 699031, 1398081, 2796181, 5592383, 11184787, 22369597, 44739217, 89478459, 178956943, 357913913, 715827853, 1431655735
Offset: 0
-
[(2^(n+4) -(6*n+9+(-1)^n))/6: n in [0..40]]; // G. C. Greubel, Jul 01 2024
-
CoefficientList[Series[(1-x^2+2x^3)/((1-x)(1-2x)(1-x^2)), {x, 0, 29}], x] (* Metin Sariyar, Sep 22 2019 *)
LinearRecurrence[{3,-1,-3,2}, {1,3,7,17}, 41] (* G. C. Greubel, Jul 01 2024 *)
-
[(2^(n+4) - (-1)^n -9 - 6*n)/6 for n in range(41)] # G. C. Greubel, Jul 01 2024
A026647
a(n) = Sum_{k=0..floor(n/2)} A026637(n-k, k).
Original entry on oeis.org
1, 1, 2, 3, 6, 10, 17, 27, 45, 73, 119, 192, 312, 505, 818, 1323, 2142, 3466, 5609, 9075, 14685, 23761, 38447, 62208, 100656, 162865, 263522, 426387, 689910, 1116298, 1806209, 2922507, 4728717, 7651225, 12379943, 20031168
Offset: 0
-
[1] cat [n le 5 select Binomial(n, Floor(n/2)) else Self(n-2) +Self(n-3) +2*Self(n-4) +Self(n-5) +3: n in [1..40]]; // G. C. Greubel, Jul 01 2024
-
a[n_]:= a[n]= If[n<6, Binomial[n, Floor[n/2]], a[n-2] +a[n-3] +2*a[n- 4] +a[n-5] +3]; (* a = A026647 *)
Table[a[n], {n,0,40}] (* G. C. Greubel, Jul 01 2024 *)
LinearRecurrence[{1,1,0,1,-1,-1},{1,1,2,3,6,10,17},40] (* Harvey P. Dale, Jan 19 2025 *)
-
@CachedFunction
def a(n): # a = A026647
if n<6: return binomial(n, n//2)
else: return a(n-2) + a(n-3) + 2*a(n-4) + a(n-5) + 3
[a(n) for n in range(41)] # G. C. Greubel, Jul 01 2024
A026645
a(n) = Sum_{k=0..floor(n/2)} A026637(n, k).
Original entry on oeis.org
1, 1, 3, 5, 14, 21, 55, 85, 216, 341, 848, 1365, 3340, 5461, 13191, 21845, 52208, 87381, 206968, 349525, 821514, 1398101, 3264044, 5592405, 12979006, 22369621, 51642594, 89478485, 205592744, 357913941, 818848135, 1431655765, 3262611696, 5726623061, 13003800704, 22906492245
Offset: 0
-
T[n_, k_]:= T[n, k]= If[k==0 || k==n, 1, If[k==1 || k==n-1, Floor[(3*n- 1)/2], T[n-1,k] + T[n-1,k-1] ]];
A026645[n_]:= Sum[T[n, k], {k, 0, Floor[n/2]}];
Table[A026645[n], {n,0,40}] (* G. C. Greubel, Jun 29 2024 *)
-
@CachedFunction
def T(n,k): # T = A026637
if k==0 or k==n: return 1
elif k==1 or k==n-1: return ((3*n-1)//2)
else: return T(n-1, k) + T(n-1, k-1)
def A026645(n): return sum(T(n,k) for k in range((n//2)+1))
[A026645(n) for n in range(41)] # G. C. Greubel, Jun 29 2024
A209518
Triangle by rows, reversal of A104712.
Original entry on oeis.org
1, 1, 3, 1, 4, 6, 1, 5, 10, 10, 1, 6, 15, 20, 15, 1, 7, 21, 35, 35, 21, 1, 8, 28, 56, 70, 56, 28, 1, 9, 36, 84, 126, 126, 84, 36, 1, 10, 45, 120, 210, 252, 210, 120, 45, 1, 11, 55, 165, 330, 462, 462, 330, 165, 55
Offset: 0
First few rows of the triangle =
1;
1, 3;
1, 4, 6;
1, 5, 10, 10;
1, 6, 15, 20, 15;
1, 7, 21, 35, 35, 21;
1, 8, 28, 56, 70, 56, 28;
1, 9, 36, 84, 126, 126, 84, 36;
1, 10, 45, 120, 210, 252, 210, 120, 45;
1, 11, 55, 165, 330, 462, 462, 30, 165, 55;
...
Showing 1-10 of 10 results.
Comments