cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A026647 a(n) = Sum_{k=0..floor(n/2)} A026637(n-k, k).

Original entry on oeis.org

1, 1, 2, 3, 6, 10, 17, 27, 45, 73, 119, 192, 312, 505, 818, 1323, 2142, 3466, 5609, 9075, 14685, 23761, 38447, 62208, 100656, 162865, 263522, 426387, 689910, 1116298, 1806209, 2922507, 4728717, 7651225, 12379943, 20031168
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [1] cat [n le 5 select Binomial(n, Floor(n/2)) else Self(n-2) +Self(n-3) +2*Self(n-4) +Self(n-5) +3: n in [1..40]]; // G. C. Greubel, Jul 01 2024
    
  • Mathematica
    a[n_]:= a[n]= If[n<6, Binomial[n, Floor[n/2]], a[n-2] +a[n-3] +2*a[n- 4] +a[n-5] +3]; (* a = A026647 *)
    Table[a[n], {n,0,40}] (* G. C. Greubel, Jul 01 2024 *)
    LinearRecurrence[{1,1,0,1,-1,-1},{1,1,2,3,6,10,17},40] (* Harvey P. Dale, Jan 19 2025 *)
  • SageMath
    @CachedFunction
    def a(n): # a = A026647
        if n<6: return binomial(n, n//2)
        else: return a(n-2) + a(n-3) + 2*a(n-4) + a(n-5) + 3
    [a(n) for n in range(41)] # G. C. Greubel, Jul 01 2024

Formula

G.f.: (1 + x^5 + x^6)/((1-x^4)*(1-x-x^2)).
From G. C. Greubel, Jul 01 2024: (Start)
a(n) = [n=0] - (3/4) + (1/4)*(-1)^n - (1/10)*2^((1-(-1)^n)/2)*(-1)^floor((n+1)/2) + (3/5)*LucasL(n+1).
a(n) = (1/20)*( 12*LucasL(n+1) + 5*(-1)^n - 15 - 2*cos(n*Pi/2) + 4*sin(n*Pi/2) ) + [n=0].
a(n) = a(n-2) + a(n-3) + 2*a(n-4) + a(n-5) + 3, with a(0) = a(1) = 1, a(2) = 2, a(3) = 3, a(4) = 6, a(5) = 10. (End)