A026725 Triangular array, T, read by rows: T(n,0) = T(n,n) = 1. For n >= 2 and 1<=k<=n-1, T(n,k) = T(n-1,k-1) + T(n-2,k-1) + T(n-1,k) if n is odd and k=n/2, otherwise T(n,k) = T(n-1,k-1) + T(n-1,k).
1, 1, 1, 1, 2, 1, 1, 4, 3, 1, 1, 5, 7, 4, 1, 1, 6, 16, 11, 5, 1, 1, 7, 22, 27, 16, 6, 1, 1, 8, 29, 65, 43, 22, 7, 1, 1, 9, 37, 94, 108, 65, 29, 8, 1, 1, 10, 46, 131, 267, 173, 94, 37, 9, 1, 1, 11, 56, 177, 398, 440, 267, 131, 46, 10, 1, 1, 12, 67, 233
Offset: 0
Examples
Triangle begins: 1 1 1 1 2 1 1 4 3 1 1 5 7 4 1 1 6 16 11 5 1 1 7 22 27 16 6 1 1 8 29 65 43 22 7 1 1 9 37 94 108 65 29 8 1 1 10 46 131 267 173 94 37 9 1 1 11 56 177 398 440 267 131 46 10 1 1 12 67 233 575 1105 707 398 177 56 11 1 ... - _Philippe Deléham_, Feb 01 2014
Links
- G. C. Greubel, Rows n = 0..99 of triangle, flattened
- Rob Arthan, Comments on A026674, A026725, A026670
Crossrefs
Cf. A026674.
Programs
-
GAP
T:= function(n,k) if k=0 or k=n then return 1; elif 2*k=n-1 then return T(n-1, k-1) + T(n-2, k-1) + T(n-1, k); else return T(n-1, k-1) + T(n-1, k); fi; end; Flat(List([0..14], n-> List([0..n], k-> T(n,k) ))); # G. C. Greubel, Jul 16 2019
-
Maple
A026725 := proc(n,k) option remember; if n < 0 or k < 0 then 0; elif k=0 or k=n then 1; elif 2*k = n-1 then procname(n-1,k-1)+procname(n-2,k-1)+procname(n-1,k) ; else procname(n-1,k-1)+procname(n-1,k) ; end if; end proc: # R. J. Mathar, Oct 21 2019
-
Mathematica
T[n_, k_]:= T[n, k]= If[k==0||k==n, 1, If[OddQ[n] && k==(n-1)/2, T[n-1, k -1] + T[n-2, k-1] + T[n-1, k], T[n-1, k-1] + T[n-1, k]]]; Table[T[n, k], {n,0,14}, {k,0,n}]//Flatten (* G. C. Greubel, Jul 16 2019 *)
-
PARI
T(n,k) = if(k==n || k==0, 1, if(2*k==n-1, T(n-1, k-1) + T(n-2, k-1) + T(n-1, k), T(n-1, k-1) + T(n-1, k) )); for(n=0,11, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Jul 16 2019
-
Sage
@CachedFunction def T(n, k): if (k==0 or k==n): return 1 elif (mod(n,2)==0 and k==(n-1)/2): return T(n-1, k-1) + T(n-2, k-1) + T(n-1, k) else: return T(n-1, k-1) + T(n-1, k) [[T(n, k) for k in (0..n)] for n in (0..14)] # G. C. Greubel, Jul 16 2019
Formula
T(n, k) = number of paths from (0, 0) to (n-k, k) in directed graph having vertices (i, j) and edges (i, j)-to-(i+1, j) and (i, j)-to-(i, j+1) for i, j >= 0 and edges (i, i+1)-to-(i+1, i+2) for i >= 0.
Comment from Rick L. Shepherd, Aug 05 2002: Probably this should be changed to "and edges (i+1, i)-to-(i+2, i+1) for i >= 0."
Extensions
Title and offset corrected by G. C. Greubel, Jul 16 2019, again by R. J. Mathar, Oct 21 2019, again by Sean A. Irvine, Oct 25 2019
Comments