cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 25 results. Next

A026726 a(n) = T(2n,n), T given by A026725.

Original entry on oeis.org

1, 2, 7, 27, 108, 440, 1812, 7514, 31307, 130883, 548547, 2303413, 9686617, 40783083, 171868037, 724837891, 3058850316, 12915186640, 54554594416, 230526280814, 974414815782, 4119854160332, 17422801069670, 73695109608352, 311768697325788, 1319136935150530
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • GAP
    List([0..30], n-> Sum([0..n], k-> (2*k+1)*Binomial(2*n,n-k)*
    Fibonacci(k+1)/(n+k+1) )); # G. C. Greubel, Jul 16 2019
  • Magma
    R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( 4*x*(1-Sqrt(1-4*x))/(8*x^2-(1-Sqrt(1-4*x))^3) )); // G. C. Greubel, Jul 16 2019
    
  • Maple
    A026726 := proc(n)
        A026725(2*n,n) ;
    end proc:
    seq(A026726(n),n=0..10) ; # R. J. Mathar, Oct 26 2019
  • Mathematica
    CoefficientList[Series[4*x*(1-Sqrt[1-4*x])/(8*x^2-(1-Sqrt[1-4*x])^3), {x,0,30}], x] (* G. C. Greubel, Jul 16 2019 *)
  • PARI
    my(x='x+O('x^30)); Vec(4*x*(1-sqrt(1-4*x))/(8*x^2-(1-sqrt(1-4*x))^3)) \\ G. C. Greubel, Jul 16 2019
    
  • Sage
    (4*x*(1-sqrt(1-4*x))/(8*x^2-(1-sqrt(1-4*x))^3)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Jul 16 2019
    

Formula

From Philippe Deléham, Feb 11 2009: (Start)
a(n) = Sum_{k=0..n} A039599(n,k)*A000045(k+1).
a(n) = Sum_{k=0..n} A106566(n,k)*A122367(k). (End)
From Philippe Deléham, Feb 02 2014: (Start)
a(n) = Sum_{k=0..n} A236843(n+k,2*k).
a(n) = Sum_{k=0..n} A236830(n,k).
a(n) = A236830(n+1,1).
a(n) = A165407(3*n).
G.f.: C(x)/(1-x*C(x)^3), C(x) the g.f. of A000108. (End)
n*(5*n-11)*a(n) +2*(-20*n^2+59*n-30)*a(n-1) +15*(5*n^2-19*n+16)*a(n-2) +2*(5*n-6)*(2*n-5)*a(n-3)=0. - R. J. Mathar, Oct 26 2019
n*a(n) +(-7*n+4)*a(n-1) +(7*n-2)*a(n-2) +(19*n-60)*a(n-3) +2*(2*n-7)*a(n-4)=0. - R. J. Mathar, Oct 26 2019

A026674 a(n) = T(2n-1,n-1) = T(2n,n+1), T given by A026725.

Original entry on oeis.org

1, 4, 16, 65, 267, 1105, 4597, 19196, 80380, 337284, 1417582, 5965622, 25130844, 105954110, 447015744, 1886996681, 7969339643, 33670068133, 142301618265, 601586916703, 2543852427847, 10759094481491, 45513214057191, 192560373660245, 814807864164497
Offset: 1

Views

Author

Keywords

Crossrefs

Also a(n) = T(2n-1, n-1), T given by A026670.

Programs

  • GAP
    List([1..30], n-> Sum([1..n], k-> Binomial(2*n, n+k)*Fibonacci(k+1) *(k/n) )); # G. C. Greubel, Jul 16 2019
  • Magma
    R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( (-1+5*x +(1-x)*Sqrt(1-4*x))/(2*(1-4*x-x^2)) )); // G. C. Greubel, Jul 16 2019
    
  • Maple
    a := n -> add(binomial(2*n,n+k)*combinat:-fibonacci(1+k)*(k/n), k=1..n):
    seq(a(n), n=1..30); # Peter Luschny, Apr 28 2016
  • Mathematica
    a[n_] := Sum[Binomial[2n, n+k] Fibonacci[k+1] k/n, {k, 1, n}];
    Array[a, 30] (* Jean-François Alcover, Jun 21 2018, after Peter Luschny *)
  • Maxima
    a(n):=sum(k*binomial(2*n,n-k)*(sum(binomial(k-i,i),i,0,k/2)),k,1,n)/n; /* Vladimir Kruchinin, Apr 28 2016 */
    
  • PARI
    a(n)=sum(k=1,n,k*binomial(2*n,n-k)*sum(i=0,k\2,binomial(k-i,i)))/n \\ Charles R Greathouse IV, Apr 28 2016
    
  • Sage
    a=((-1+5*x +(1-x)*sqrt(1-4*x))/(2*(1-4*x-x^2))).series(x, 30).coefficients(x, sparse=False); a[1:] # G. C. Greubel, Jul 16 2019
    

Formula

G.f.: (1/2)*((1-x)/(sqrt(1-4*x)-x) - 1). - Ralf Stephan, Feb 05 2004
G.f.: x*c(x)^3/(1-x*c(x)^3) = (1-5*x -(1-x)*sqrt(1-4*x))/(2*(x^2+4*x-1)), c(x) the g.f. of A000108. - Paul Barry, Mar 19 2007
From Gary W. Adamson, Jul 11 2011: (Start)
a(n) is the upper left term in M^n, where M is the following infinite square production matrix:
1, 1, 0, 0, 0, 0, 0, ...
3, 1, 1, 0, 0, 0, 0, ...
6, 1, 1, 1, 0, 0, 0, ...
10, 1, 1, 1, 1, 0, 0, ...
15, 1, 1, 1, 1, 1, 0, ...
21, 1, 1, 1, 1, 1, 1, ...
... (End)
D-finite with recurrence n*a(n) +(-9*n+8)*a(n-1) +23*(n-2)*a(n-2) +(-11*n+48)*a(n-3) +2*(-2*n+7)*a(n-4)=0. - R. J. Mathar, Nov 26 2012
a(n) = (1/n)*Sum_{k=1..n} k*binomial(2*n,n-k)*Sum_{i=0..k/2} binomial(k-i,i). - Vladimir Kruchinin, Apr 28 2016
a(n) ~ (3 - sqrt(5)) * (2 + sqrt(5))^n / (2*sqrt(5)). - Vaclav Kotesovec, Jul 18 2019

A026842 a(n) = T(2n,n-3), T given by A026725.

Original entry on oeis.org

1, 9, 56, 300, 1487, 7041, 32381, 146017, 649395, 2859231, 12494914, 54291912, 234860677, 1012433965, 4352210327, 18666918033, 79916230409, 341615895659, 1458457275715, 6220016154525, 26503542364381, 112847001503099, 480173686483581
Offset: 3

Views

Author

Keywords

Comments

Column k=8 of triangle A236830. - Philippe Deléham, Feb 02 2014

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( (1-Sqrt(1-4*x))^8/(32*x^3*(8*x^2 -(1-Sqrt(1-4*x))^3 )) )); // G. C. Greubel, Jul 17 2019
    
  • Mathematica
    Drop[CoefficientList[Series[(1-Sqrt[1-4*x])^8/(32*x^3*(8*x^2 -(1 - Sqrt[1-4*x])^3 )), {x,0,30}], x],3] (* G. C. Greubel, Jul 17 2019 *)
  • PARI
    my(x='x+O('x^30)); Vec((1-sqrt(1-4*x))^8/(32*x^3*(8*x^2 -(1 - sqrt(1-4*x))^3 ))) \\ G. C. Greubel, Jul 17 2019
    
  • Sage
    a=((1-sqrt(1-4*x))^8/(32*x^3*(8*x^2 -(1-sqrt(1-4*x))^3 ))).series(x, 30).coefficients(x, sparse=False); a[3:] # G. C. Greubel, Jul 17 2019

Formula

a(n) = A026846(n) = A026849(n). - Philippe Deléham, Feb 02 2014
G.f.: (x^3*C(x)^8)/(1-x*C(x)^3) where C(x) is the g.f. of A000108. - Philippe Deléham, Feb 02 2014
D-finite with recurrence -(n+3)*(253*n-940)*a(n) +(3061*n^2-6571*n-18156)*a(n-1) +(-12091*n^2+43849*n-996)*a(n-2) +(14543*n^2-76721*n+109596)*a(n-3) +2*(1037*n-2568)*(2*n-5)*a(n-4)=0. - R. J. Mathar, Jul 22 2025

A026846 a(n) = T(2n+1,n+4), T given by A026725.

Original entry on oeis.org

1, 9, 56, 300, 1487, 7041, 32381, 146017, 649395, 2859231, 12494914, 54291912, 234860677, 1012433965, 4352210327, 18666918033, 79916230409, 341615895659, 1458457275715, 6220016154525, 26503542364381, 112847001503099, 480173686483581
Offset: 3

Views

Author

Keywords

Comments

This is probably the same as A026842 because A026725 is built in a left-right symmetric Pascal-tree-summation fashion. - R. J. Mathar, May 28 2008
Column k=8 of triangle A236830. - Philippe Deléham, Feb 02 2014

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( (1-Sqrt(1-4*x))^8/(32*x^3*(8*x^2 -(1-Sqrt(1-4*x))^3 )) )); // G. C. Greubel, Jul 17 2019
    
  • Mathematica
    Drop[CoefficientList[Series[(1-Sqrt[1-4*x])^8/(32*x^3*(8*x^2 -(1 - Sqrt[1-4*x])^3 )), {x,0,30}], x], 3] (* G. C. Greubel, Jul 17 2019 *)
  • PARI
    my(x='x+O('x^30)); Vec((1-sqrt(1-4*x))^8/(32*x^3*(8*x^2 -(1 - sqrt(1-4*x))^3 ))) \\ G. C. Greubel, Jul 17 2019
    
  • Sage
    a=((1-sqrt(1-4*x))^8/(32*x^3*(8*x^2 -(1-sqrt(1-4*x))^3 ))).series(x, 30).coefficients(x, sparse=False); a[3:] # G. C. Greubel, Jul 17 2019

Formula

a(n) = A026842(n) = A026849(n). - Philippe Deléham, Feb 02 2014
G.f.: (x^3*C(x)^8)/(1-x*C(x)^3) where C(x) is the g.f. of A000108. - Philippe Deléham, Feb 02 2014

A026732 a(n) = Sum_{k=0..n} T(n,k), T given by A026725.

Original entry on oeis.org

1, 2, 4, 9, 18, 40, 80, 176, 352, 769, 1538, 3343, 6686, 14477, 28954, 62505, 125010, 269216, 538432, 1157244, 2314488, 4966260, 9932520, 21282622, 42565244, 91096110, 182192220, 389515284, 779030568, 1664015246, 3328030492
Offset: 0

Views

Author

Keywords

Programs

  • GAP
    T:= function(n,k)
        if k=0 or k=n then return 1;
        elif 2*k=n-1 then return T(n-1, k-1) + T(n-2, k-1) + T(n-1, k);
        else return T(n-1, k-1) + T(n-1, k);
        fi;
      end;
    List([0..30], n-> Sum([0..n], k-> T(n,k) )); # G. C. Greubel, Oct 26 2019
  • Maple
    A026732 := proc(n)
        add(A026725(n,k),k=0..n) ;
    end proc:
    seq(A026732(n),n=0..10) ; # R. J. Mathar, Oct 26 2019
  • Mathematica
    T[n_, k_]:= T[n, k]= If[k==0 || k==n, 1, If[OddQ[n] && k==(n-1)/2, T[n-1, k-1] + T[n-2, k-1] + T[n-1, k], T[n-1, k-1] + T[n-1, k]]]; Table[Sum[T[n, k], {k, 0, n}], {n, 0, 30}] (* G. C. Greubel, Oct 26 2019 *)
  • PARI
    T(n,k) = if(k==n || k==0, 1, if(2*k==n-1, T(n-1, k-1) + T(n-2, k-1) + T(n-1, k), T(n-1, k-1) + T(n-1, k) ));
    vector(31, n, sum(k=0,n-1, T(n-1,k)) ) \\ G. C. Greubel, Oct 26 2019
    
  • Sage
    @CachedFunction
    def T(n, k):
        if (k==0 or k==n): return 1
        elif (mod(n,2)==1 and k==(n-1)/2): return T(n-1, k-1) + T(n-2, k-1) + T(n-1, k)
        else: return T(n-1, k-1) + T(n-1, k)
    [sum(T(n, k) for k in (0..n)) for n in (0..30)] # G. C. Greubel, Oct 26 2019
    

Formula

Conjecture: +(-n+1)*a(n) +2*a(n-1) +3*(3*n-7)*a(n-2) -10*a(n-3) +(-23*n+95)*a(n-4) +6*a(n-5) +(11*n-95)*a(n-6) +2*a(n-7) +4*(n-7)*a(n-8)=0. - R. J. Mathar, Oct 26 2019

A026841 a(n) = T(2n,n-4), T given by A026725.

Original entry on oeis.org

1, 11, 79, 471, 2535, 12809, 62067, 292085, 1345718, 6102780, 27343148, 121359692, 534632836, 2341151646, 10201950700, 44278673806, 191540714294, 826265471868, 3555992623850, 15273547250820, 65491352071266, 280412963707416
Offset: 4

Views

Author

Keywords

Comments

Column k=10 of triangle A236830. - Philippe Deléham, Feb 02 2014

Crossrefs

Cf. A236830.

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 40); Coefficients(R!( (1-Sqrt(1-4*x))^10/(128*x^4*(8*x^2 -(1-Sqrt(1-4*x))^3 )) )); // G. C. Greubel, Jul 17 2019
    
  • Mathematica
    Drop[CoefficientList[Series[(1-Sqrt[1-4*x])^10/(128*x^4*(8*x^2 -(1 - Sqrt[1-4*x])^3 )), {x,0,40}], x], 4] (* G. C. Greubel, Jul 17 2019 *)
  • PARI
    my(x='x+O('x^40)); Vec((1-sqrt(1-4*x))^10/(128*x^4*(8*x^2 -(1 - sqrt(1-4*x))^3 ))) \\ G. C. Greubel, Jul 17 2019
    
  • Sage
    a=((1-sqrt(1-4*x))^10/(128*x^4*(8*x^2 -(1-sqrt(1-4*x))^3 ))).series(x, 45).coefficients(x, sparse=False); a[4:40] # G. C. Greubel, Jul 17 2019

Formula

a(n) = A026848(n). - Philippe Deléham, Feb 02 2014
G.f.: (x^4*C(x)^10)/(1-x*C(x)^3) where C(x) is the g.f. of A000108. - Philippe Deléham, Feb 02 2014
D-finite with recurrence (n+4)*(3421*n+2687)*a(n) +(3421*n^2-245139*n-819238)*a(n-1) +3*(-126201*n^2+820641*n+1451992)*a(n-2) +(1944367*n^2-12105285*n+5094446)*a(n-3) +6*(-438489*n^2+3204217*n-6453730)*a(n-4) -12*(2*n-7)*(30601*n-111490)*a(n-5)=0. - R. J. Mathar, Jul 22 2025

A026672 a(n) = T(2n,n-1), T given by A026670. Also T(2n,n-1)=T(2n+1,n+2), T given by A026725; and T(2n,n-1), T given by A026736.

Original entry on oeis.org

1, 5, 22, 94, 398, 1680, 7085, 29877, 126021, 531751, 2244627, 9478605, 40040183, 169193597, 715143046, 3023492646, 12785541850, 54076955716, 228759017624, 967850695362, 4095387893312, 17331318506030
Offset: 2

Views

Author

Keywords

Comments

Column k=4 of triangle A236830. - Philippe Deléham, Feb 02 2014

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!(  (1-Sqrt(1-4*x))^4/(2*(8*x^2 -(1-Sqrt(1-4*x))^3)) )); // G. C. Greubel, Jul 16 2019
    
  • Mathematica
    Drop[CoefficientList[Series[(1-Sqrt[1-4*x])^4/(2*(8*x^2 -(1-Sqrt[1-4*x] )^3)), {x,0,30}], x], 2] (* G. C. Greubel, Jul 16 2019 *)
  • PARI
    my(x='x+O('x^30)); Vec( (1-sqrt(1-4*x))^4/(2*(8*x^2 -(1-sqrt(1-4*x))^3))) \\ G. C. Greubel, Jul 16 2019
    
  • Sage
    a=((1-sqrt(1-4*x))^4/(2*(8*x^2 -(1-sqrt(1-4*x))^3))).series(x, 30).coefficients(x, sparse=False); a[2:] # G. C. Greubel, Jul 16 2019

Formula

G.f.: (x*C(x)^4)/(1-x*C(x)^3), where C(x) is the g.f. of A000108. - Philippe Deléham, Feb 02 2014
Conjecture: -(n+1)*(n-6)*a(n) +2*(4*n^2-23*n+3)*a(n-1) +3*(-5*n^2+33*n-42)*a(n-2) -2*(2*n-3)*(n-5)*a(n-3)=0. - R. J. Mathar, Aug 08 2015

A026675 a(n) = T(2n-1,n-2), T given by A026670. Also T(2n-1,n-2) = T(2n,n+2), T given by A026725 and T(2n,n-2), T given by A026736.

Original entry on oeis.org

1, 6, 29, 131, 575, 2488, 10681, 45641, 194467, 827045, 3512983, 14909339, 63239487, 268127302, 1136495965, 4816202207, 20406887583, 86457399359, 366263778659, 1551535465465, 6572224024539, 27838835937511, 117918419518219
Offset: 2

Views

Author

Keywords

Comments

Column k=5 of triangle A236830. - Philippe Deléham, Feb 02 2014

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!(  (1-Sqrt(1-4*x))^5/(4*x*(8*x^2 -(1-Sqrt(1-4*x))^3)) )); // G. C. Greubel, Jul 16 2019
    
  • Mathematica
    Drop[CoefficientList[Series[(1-Sqrt[1-4*x])^5/(4*x*(8*x^2 -(1-Sqrt[1 - 4*x])^3)), {x,0,30}], x], 2] (* G. C. Greubel, Jul 16 2019 *)
  • PARI
    my(x='x+O('x^30)); Vec( (1-sqrt(1-4*x))^5/(4*x*(8*x^2 -(1-sqrt(1-4*x))^3))) \\ G. C. Greubel, Jul 16 2019
    
  • Sage
    a=((1-sqrt(1-4*x))^5/(4*x*(8*x^2 -(1-sqrt(1-4*x))^3))).series(x, 30).coefficients(x, sparse=False); a[2:] # G. C. Greubel, Jul 16 2019

Formula

G.f.: (x^2*C(x)^5)/(1-x*C(x)^3) where C(x) is the g.f. of A000108. - Philippe Deléham, Feb 02 2014

A026733 a(n) = Sum_{k=0..floor(n/2)} T(n,k), T given by A026725.

Original entry on oeis.org

1, 1, 3, 5, 13, 23, 57, 103, 249, 455, 1083, 1993, 4693, 8679, 20275, 37633, 87377, 162643, 375789, 701075, 1613413, 3015563, 6916957, 12948083, 29617161, 55513327, 126678893, 237705547, 541325021, 1016736115, 2311294377
Offset: 0

Views

Author

Keywords

Programs

  • Maple
    A026733 := proc(n)
        add(A026725(n,k),k=0..floor(n/2)) ;
    end proc:
    seq(A026733(n),n=0..10) ; # R. J. Mathar, Oct 26 2019
  • Mathematica
    T[n_, k_]:= T[n, k]= If[k==0 || k==n, 1, If[OddQ[n] && k==(n-1)/2, T[n-1, k-1] + T[n-2, k-1] + T[n-1, k], T[n-1, k-1] + T[n-1, k]]]; Table[Sum[T[n, k], {k, 0, Floor[n/2]}], {n, 0, 30}] (* G. C. Greubel, Oct 26 2019 *)
  • PARI
    T(n,k) = if(k==n || k==0, 1, if(2*k==n-1, T(n-1, k-1) + T(n-2, k-1) + T(n-1, k), T(n-1, k-1) + T(n-1, k) ));
    vector(31, n, sum(k=0,floor(n-1/2), T(n-1,k)) ) \\ G. C. Greubel, Oct 26 2019
    
  • Sage
    @CachedFunction
    def T(n, k):
        if (k==0 or k==n): return 1
        elif (mod(n,2)==1 and k==(n-1)/2): return T(n-1, k-1) + T(n-2, k-1) + T(n-1, k)
        else: return T(n-1, k-1) + T(n-1, k)
    [sum(T(n, k) for k in (0..floor(n/2))) for n in (0..30)] # G. C. Greubel, Oct 26 2019

Formula

Conjecture: (-n+2)*a(n) +(n-2)*a(n-1) +2*(4*n-13)*a(n-2) +8*(-n+4)*a(n-3) +5*(-3*n+14)*a(n-4) +(15*n-94)*a(n-5) +2*(-2*n+9)*a(n-6) +4*(n-6)*a(n-7)=0. - R. J. Mathar, Oct 26 2019

A026843 a(n) = T(2n,n+3), T given by A026725.

Original entry on oeis.org

1, 8, 46, 233, 1108, 5083, 22805, 100827, 441311, 1917751, 8289965, 35694218, 153225617, 656213596, 2805143526, 11973556060, 51047361676, 217420991444, 925300665762, 3935293406942, 16727533586006, 71069911887898, 301835332909216
Offset: 3

Views

Author

Keywords

Comments

Column k=7 of triangle A236830. - Philippe Deléham, Feb 02 2014

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 40); Coefficients(R!( (1-Sqrt(1-4*x))^7/(16*x^2*(8*x^2 -(1-Sqrt(1-4*x))^3)) )); // G. C. Greubel, Jul 19 2019
    
  • Mathematica
    Drop[CoefficientList[Series[(1-Sqrt[1-4*x])^7/(16*x^2*(8*x^2 -(1-Sqrt[1-4*x])^3)), {x, 0, 40}], x], 3] (* G. C. Greubel, Jul 19 2019 *)
  • PARI
    my(x='x+O('x^40)); Vec( (1-sqrt(1-4*x))^7/(16*x^2*(8*x^2 -(1-sqrt(1-4*x))^3)) ) \\ G. C. Greubel, Jul 19 2019
    
  • Sage
    a=((1-sqrt(1-4*x))^7/(16*x^2*(8*x^2 -(1-sqrt(1-4*x))^3)) ).series(x, 45).coefficients(x, sparse=False); a[3:40] # G. C. Greubel, Jul 19 2019

Formula

G.f.: (x^3*C(x)^7)/(1-x*C(x)^3) where C(x) is the g.f. of A000108. - Philippe Deléham, Feb 02 2014
a(n) ~ phi^(3*n-4) / sqrt(5), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Jul 19 2019
Showing 1-10 of 25 results. Next