A026726
a(n) = T(2n,n), T given by A026725.
Original entry on oeis.org
1, 2, 7, 27, 108, 440, 1812, 7514, 31307, 130883, 548547, 2303413, 9686617, 40783083, 171868037, 724837891, 3058850316, 12915186640, 54554594416, 230526280814, 974414815782, 4119854160332, 17422801069670, 73695109608352, 311768697325788, 1319136935150530
Offset: 0
-
List([0..30], n-> Sum([0..n], k-> (2*k+1)*Binomial(2*n,n-k)*
Fibonacci(k+1)/(n+k+1) )); # G. C. Greubel, Jul 16 2019
-
R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( 4*x*(1-Sqrt(1-4*x))/(8*x^2-(1-Sqrt(1-4*x))^3) )); // G. C. Greubel, Jul 16 2019
-
A026726 := proc(n)
A026725(2*n,n) ;
end proc:
seq(A026726(n),n=0..10) ; # R. J. Mathar, Oct 26 2019
-
CoefficientList[Series[4*x*(1-Sqrt[1-4*x])/(8*x^2-(1-Sqrt[1-4*x])^3), {x,0,30}], x] (* G. C. Greubel, Jul 16 2019 *)
-
my(x='x+O('x^30)); Vec(4*x*(1-sqrt(1-4*x))/(8*x^2-(1-sqrt(1-4*x))^3)) \\ G. C. Greubel, Jul 16 2019
-
(4*x*(1-sqrt(1-4*x))/(8*x^2-(1-sqrt(1-4*x))^3)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Jul 16 2019
A026674
a(n) = T(2n-1,n-1) = T(2n,n+1), T given by A026725.
Original entry on oeis.org
1, 4, 16, 65, 267, 1105, 4597, 19196, 80380, 337284, 1417582, 5965622, 25130844, 105954110, 447015744, 1886996681, 7969339643, 33670068133, 142301618265, 601586916703, 2543852427847, 10759094481491, 45513214057191, 192560373660245, 814807864164497
Offset: 1
Also a(n) = T(2n-1, n-1), T given by
A026670.
-
List([1..30], n-> Sum([1..n], k-> Binomial(2*n, n+k)*Fibonacci(k+1) *(k/n) )); # G. C. Greubel, Jul 16 2019
-
R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( (-1+5*x +(1-x)*Sqrt(1-4*x))/(2*(1-4*x-x^2)) )); // G. C. Greubel, Jul 16 2019
-
a := n -> add(binomial(2*n,n+k)*combinat:-fibonacci(1+k)*(k/n), k=1..n):
seq(a(n), n=1..30); # Peter Luschny, Apr 28 2016
-
a[n_] := Sum[Binomial[2n, n+k] Fibonacci[k+1] k/n, {k, 1, n}];
Array[a, 30] (* Jean-François Alcover, Jun 21 2018, after Peter Luschny *)
-
a(n):=sum(k*binomial(2*n,n-k)*(sum(binomial(k-i,i),i,0,k/2)),k,1,n)/n; /* Vladimir Kruchinin, Apr 28 2016 */
-
a(n)=sum(k=1,n,k*binomial(2*n,n-k)*sum(i=0,k\2,binomial(k-i,i)))/n \\ Charles R Greathouse IV, Apr 28 2016
-
a=((-1+5*x +(1-x)*sqrt(1-4*x))/(2*(1-4*x-x^2))).series(x, 30).coefficients(x, sparse=False); a[1:] # G. C. Greubel, Jul 16 2019
A026842
a(n) = T(2n,n-3), T given by A026725.
Original entry on oeis.org
1, 9, 56, 300, 1487, 7041, 32381, 146017, 649395, 2859231, 12494914, 54291912, 234860677, 1012433965, 4352210327, 18666918033, 79916230409, 341615895659, 1458457275715, 6220016154525, 26503542364381, 112847001503099, 480173686483581
Offset: 3
-
R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( (1-Sqrt(1-4*x))^8/(32*x^3*(8*x^2 -(1-Sqrt(1-4*x))^3 )) )); // G. C. Greubel, Jul 17 2019
-
Drop[CoefficientList[Series[(1-Sqrt[1-4*x])^8/(32*x^3*(8*x^2 -(1 - Sqrt[1-4*x])^3 )), {x,0,30}], x],3] (* G. C. Greubel, Jul 17 2019 *)
-
my(x='x+O('x^30)); Vec((1-sqrt(1-4*x))^8/(32*x^3*(8*x^2 -(1 - sqrt(1-4*x))^3 ))) \\ G. C. Greubel, Jul 17 2019
-
a=((1-sqrt(1-4*x))^8/(32*x^3*(8*x^2 -(1-sqrt(1-4*x))^3 ))).series(x, 30).coefficients(x, sparse=False); a[3:] # G. C. Greubel, Jul 17 2019
A026846
a(n) = T(2n+1,n+4), T given by A026725.
Original entry on oeis.org
1, 9, 56, 300, 1487, 7041, 32381, 146017, 649395, 2859231, 12494914, 54291912, 234860677, 1012433965, 4352210327, 18666918033, 79916230409, 341615895659, 1458457275715, 6220016154525, 26503542364381, 112847001503099, 480173686483581
Offset: 3
-
R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( (1-Sqrt(1-4*x))^8/(32*x^3*(8*x^2 -(1-Sqrt(1-4*x))^3 )) )); // G. C. Greubel, Jul 17 2019
-
Drop[CoefficientList[Series[(1-Sqrt[1-4*x])^8/(32*x^3*(8*x^2 -(1 - Sqrt[1-4*x])^3 )), {x,0,30}], x], 3] (* G. C. Greubel, Jul 17 2019 *)
-
my(x='x+O('x^30)); Vec((1-sqrt(1-4*x))^8/(32*x^3*(8*x^2 -(1 - sqrt(1-4*x))^3 ))) \\ G. C. Greubel, Jul 17 2019
-
a=((1-sqrt(1-4*x))^8/(32*x^3*(8*x^2 -(1-sqrt(1-4*x))^3 ))).series(x, 30).coefficients(x, sparse=False); a[3:] # G. C. Greubel, Jul 17 2019
A026732
a(n) = Sum_{k=0..n} T(n,k), T given by A026725.
Original entry on oeis.org
1, 2, 4, 9, 18, 40, 80, 176, 352, 769, 1538, 3343, 6686, 14477, 28954, 62505, 125010, 269216, 538432, 1157244, 2314488, 4966260, 9932520, 21282622, 42565244, 91096110, 182192220, 389515284, 779030568, 1664015246, 3328030492
Offset: 0
-
T:= function(n,k)
if k=0 or k=n then return 1;
elif 2*k=n-1 then return T(n-1, k-1) + T(n-2, k-1) + T(n-1, k);
else return T(n-1, k-1) + T(n-1, k);
fi;
end;
List([0..30], n-> Sum([0..n], k-> T(n,k) )); # G. C. Greubel, Oct 26 2019
-
A026732 := proc(n)
add(A026725(n,k),k=0..n) ;
end proc:
seq(A026732(n),n=0..10) ; # R. J. Mathar, Oct 26 2019
-
T[n_, k_]:= T[n, k]= If[k==0 || k==n, 1, If[OddQ[n] && k==(n-1)/2, T[n-1, k-1] + T[n-2, k-1] + T[n-1, k], T[n-1, k-1] + T[n-1, k]]]; Table[Sum[T[n, k], {k, 0, n}], {n, 0, 30}] (* G. C. Greubel, Oct 26 2019 *)
-
T(n,k) = if(k==n || k==0, 1, if(2*k==n-1, T(n-1, k-1) + T(n-2, k-1) + T(n-1, k), T(n-1, k-1) + T(n-1, k) ));
vector(31, n, sum(k=0,n-1, T(n-1,k)) ) \\ G. C. Greubel, Oct 26 2019
-
@CachedFunction
def T(n, k):
if (k==0 or k==n): return 1
elif (mod(n,2)==1 and k==(n-1)/2): return T(n-1, k-1) + T(n-2, k-1) + T(n-1, k)
else: return T(n-1, k-1) + T(n-1, k)
[sum(T(n, k) for k in (0..n)) for n in (0..30)] # G. C. Greubel, Oct 26 2019
A026841
a(n) = T(2n,n-4), T given by A026725.
Original entry on oeis.org
1, 11, 79, 471, 2535, 12809, 62067, 292085, 1345718, 6102780, 27343148, 121359692, 534632836, 2341151646, 10201950700, 44278673806, 191540714294, 826265471868, 3555992623850, 15273547250820, 65491352071266, 280412963707416
Offset: 4
-
R:=PowerSeriesRing(Rationals(), 40); Coefficients(R!( (1-Sqrt(1-4*x))^10/(128*x^4*(8*x^2 -(1-Sqrt(1-4*x))^3 )) )); // G. C. Greubel, Jul 17 2019
-
Drop[CoefficientList[Series[(1-Sqrt[1-4*x])^10/(128*x^4*(8*x^2 -(1 - Sqrt[1-4*x])^3 )), {x,0,40}], x], 4] (* G. C. Greubel, Jul 17 2019 *)
-
my(x='x+O('x^40)); Vec((1-sqrt(1-4*x))^10/(128*x^4*(8*x^2 -(1 - sqrt(1-4*x))^3 ))) \\ G. C. Greubel, Jul 17 2019
-
a=((1-sqrt(1-4*x))^10/(128*x^4*(8*x^2 -(1-sqrt(1-4*x))^3 ))).series(x, 45).coefficients(x, sparse=False); a[4:40] # G. C. Greubel, Jul 17 2019
A026672
a(n) = T(2n,n-1), T given by A026670. Also T(2n,n-1)=T(2n+1,n+2), T given by A026725; and T(2n,n-1), T given by A026736.
Original entry on oeis.org
1, 5, 22, 94, 398, 1680, 7085, 29877, 126021, 531751, 2244627, 9478605, 40040183, 169193597, 715143046, 3023492646, 12785541850, 54076955716, 228759017624, 967850695362, 4095387893312, 17331318506030
Offset: 2
-
R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( (1-Sqrt(1-4*x))^4/(2*(8*x^2 -(1-Sqrt(1-4*x))^3)) )); // G. C. Greubel, Jul 16 2019
-
Drop[CoefficientList[Series[(1-Sqrt[1-4*x])^4/(2*(8*x^2 -(1-Sqrt[1-4*x] )^3)), {x,0,30}], x], 2] (* G. C. Greubel, Jul 16 2019 *)
-
my(x='x+O('x^30)); Vec( (1-sqrt(1-4*x))^4/(2*(8*x^2 -(1-sqrt(1-4*x))^3))) \\ G. C. Greubel, Jul 16 2019
-
a=((1-sqrt(1-4*x))^4/(2*(8*x^2 -(1-sqrt(1-4*x))^3))).series(x, 30).coefficients(x, sparse=False); a[2:] # G. C. Greubel, Jul 16 2019
A026675
a(n) = T(2n-1,n-2), T given by A026670. Also T(2n-1,n-2) = T(2n,n+2), T given by A026725 and T(2n,n-2), T given by A026736.
Original entry on oeis.org
1, 6, 29, 131, 575, 2488, 10681, 45641, 194467, 827045, 3512983, 14909339, 63239487, 268127302, 1136495965, 4816202207, 20406887583, 86457399359, 366263778659, 1551535465465, 6572224024539, 27838835937511, 117918419518219
Offset: 2
-
R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( (1-Sqrt(1-4*x))^5/(4*x*(8*x^2 -(1-Sqrt(1-4*x))^3)) )); // G. C. Greubel, Jul 16 2019
-
Drop[CoefficientList[Series[(1-Sqrt[1-4*x])^5/(4*x*(8*x^2 -(1-Sqrt[1 - 4*x])^3)), {x,0,30}], x], 2] (* G. C. Greubel, Jul 16 2019 *)
-
my(x='x+O('x^30)); Vec( (1-sqrt(1-4*x))^5/(4*x*(8*x^2 -(1-sqrt(1-4*x))^3))) \\ G. C. Greubel, Jul 16 2019
-
a=((1-sqrt(1-4*x))^5/(4*x*(8*x^2 -(1-sqrt(1-4*x))^3))).series(x, 30).coefficients(x, sparse=False); a[2:] # G. C. Greubel, Jul 16 2019
A026733
a(n) = Sum_{k=0..floor(n/2)} T(n,k), T given by A026725.
Original entry on oeis.org
1, 1, 3, 5, 13, 23, 57, 103, 249, 455, 1083, 1993, 4693, 8679, 20275, 37633, 87377, 162643, 375789, 701075, 1613413, 3015563, 6916957, 12948083, 29617161, 55513327, 126678893, 237705547, 541325021, 1016736115, 2311294377
Offset: 0
-
A026733 := proc(n)
add(A026725(n,k),k=0..floor(n/2)) ;
end proc:
seq(A026733(n),n=0..10) ; # R. J. Mathar, Oct 26 2019
-
T[n_, k_]:= T[n, k]= If[k==0 || k==n, 1, If[OddQ[n] && k==(n-1)/2, T[n-1, k-1] + T[n-2, k-1] + T[n-1, k], T[n-1, k-1] + T[n-1, k]]]; Table[Sum[T[n, k], {k, 0, Floor[n/2]}], {n, 0, 30}] (* G. C. Greubel, Oct 26 2019 *)
-
T(n,k) = if(k==n || k==0, 1, if(2*k==n-1, T(n-1, k-1) + T(n-2, k-1) + T(n-1, k), T(n-1, k-1) + T(n-1, k) ));
vector(31, n, sum(k=0,floor(n-1/2), T(n-1,k)) ) \\ G. C. Greubel, Oct 26 2019
-
@CachedFunction
def T(n, k):
if (k==0 or k==n): return 1
elif (mod(n,2)==1 and k==(n-1)/2): return T(n-1, k-1) + T(n-2, k-1) + T(n-1, k)
else: return T(n-1, k-1) + T(n-1, k)
[sum(T(n, k) for k in (0..floor(n/2))) for n in (0..30)] # G. C. Greubel, Oct 26 2019
A026843
a(n) = T(2n,n+3), T given by A026725.
Original entry on oeis.org
1, 8, 46, 233, 1108, 5083, 22805, 100827, 441311, 1917751, 8289965, 35694218, 153225617, 656213596, 2805143526, 11973556060, 51047361676, 217420991444, 925300665762, 3935293406942, 16727533586006, 71069911887898, 301835332909216
Offset: 3
-
R:=PowerSeriesRing(Rationals(), 40); Coefficients(R!( (1-Sqrt(1-4*x))^7/(16*x^2*(8*x^2 -(1-Sqrt(1-4*x))^3)) )); // G. C. Greubel, Jul 19 2019
-
Drop[CoefficientList[Series[(1-Sqrt[1-4*x])^7/(16*x^2*(8*x^2 -(1-Sqrt[1-4*x])^3)), {x, 0, 40}], x], 3] (* G. C. Greubel, Jul 19 2019 *)
-
my(x='x+O('x^40)); Vec( (1-sqrt(1-4*x))^7/(16*x^2*(8*x^2 -(1-sqrt(1-4*x))^3)) ) \\ G. C. Greubel, Jul 19 2019
-
a=((1-sqrt(1-4*x))^7/(16*x^2*(8*x^2 -(1-sqrt(1-4*x))^3)) ).series(x, 45).coefficients(x, sparse=False); a[3:40] # G. C. Greubel, Jul 19 2019
Showing 1-10 of 25 results.
Comments